EPC技术文章

eGaN FETs Enable More Than 4-kW/in3 Power Density for 48 V to 12 V Power Conversion

Growing computational power and miniaturization of electronics in computing and data centers is increasingly putting pressure on 48-V power delivery and conversion systems. High-efficiency and high-power–density converters enable a reduction in power losses at the system level while allowing smaller form factors. In this context, LLC resonant topologies combined with GaN technology succeed to deliver outstanding performance, as it has been demonstrated with multiple examples. This article will show the key design parameters and components to achieve beyond 4 kW/in3 of power density in a 48-V to 12-V LLC converter using eGaN® FETs.

Power Electronics News
December, 2022
Read article

Dispelling Myths: Don’t believe it when they say you need a bipolar gate drive for eGaN FETs

GaN devices have gone from initial R&D to mainstream designs over the last 15 years. Unfortunately, there are many misunderstandings left-over from those early-stage bipolar drive circuit developments or dead-end technology branches. One of the most pernicious is the topic of bipolar drive. In actuality, unipolar drives are the best way to drive eGaN® FETs.

Power Electronics Tips
October, 2022
Read article

GaN vs. Silicon Smackdown

One way to tell when a new technology has passed the tipping point of adoption is by the voices advocating the status quo. The more conservative voices tend to cite older information that, given the fast change of trajectory that occurs at a tipping point, can lead to poor decisions for new designs. In the world of GaN power devices the tipping point occurred in the past two years when the rate of new GaN-based designs started to double year-on-year, and the legacy MOSFET designs started to face critical supply shortages due to their finely tuned, but less flexible supply chains. GaN devices, on the other hand, have remained in stock at most major distributors due to their relatively new and flexible supply chains utilizing older silicon foundries, but affording these foundries a new and vibrant future. In this article we will address some of the common misconceptions still showing up in articles and at conferences, usually presented by advocates of the status quo.

Bodo’s Power Systems
May, 2022
Read article

功率系统采用GaN的5大误区

我们将在本文讨论客户为何迟迟未采用氮化镓技术的一些最常见原因,氮化镓技术显然是较旧的硅基功率MOSFET的替代技术。在不深入研究详细的统计数据下,按最常发生推导出一系列原因,并理解某些应用比其他应用更侧重氮化镓技术的某些特性。我们的讨论仅限于额定电压低于400 V的器件,因为这是EPC公司的氮化镓场效应晶体管和集成电路的重点应用。

PSD功率系统设计
2022年3月
阅读文章

Better thermal management of eGaN FETs

A few simple thermal management guidelines can help conduct heat away from GaN FETs. Enhancement-mode gallium nitride (eGaN) FETs offer high power-density with ultra-fast switching and low on-resistance, all in a compact form factor. However, the power levels these high-performance devices provide can be limited by extreme heat-flux densities. If not managed properly, the generated heat can compromise reliability and performance. Fortunately, chip-scale packaging for eGaN FETs can be leveraged at the board-side and the backside (i.e., case) to better dissipate heat.

Power Electronics Tips
February, 2022
Read article

Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review

In the field of motion control, there is a growing use of GaN devices, especially in low voltage applications. This paper provides guidelines for designers on the optimal use of GaN FETs in motor control applications, identifying the advantages and discussing the main issues.

Energies Journal
October, 2021
Download and read article

FET Roundup: eGaN FETs, Next-gen SiC FETs, and “RibbonFETs” Hit the Scene

This month has been a busy one in the FET space. Here are a few FETs from EPC, UnitedSiC, and Intel that depart from traditional silicon transistors in interesting ways.

All About Circuits
October, 2021
Read article

Power Bricks Get an Efficiency Boost with GaN

The design of an LLC resonant converter illustrates how eGaN FETs can shrink the physical size of modern supply circuitry.

Power Electronic Tips
October, 2021
Read article

应对用于超薄计算应用的超薄并具高功率密度的 48 V DC/DC 转换器的电源和磁性设计挑战

在过去十年中,计算机、显示器、智能手机和其他消费电子系统变得更薄,同时功能也变得更强大。因此,市场对具有更高功率密度的更纤薄电源解决方案的需求不断增加。本文研究了额定功率为 250 W且超薄的48 V / 20 V转换器,它可以采用各种非隔离型 DC/DC 降压拓扑的可行性。我们研究了各种非隔离型拓扑的优缺点,从而了解拓扑如何影响功率晶体管和磁性元件的选择,特别是电感器,因为这两个器件产生转换器的大部分损耗。本文还详细分析了为这些应用设计薄型电感器所面对的挑战,包括电感器损耗的因素、电感器尺寸和设计权衡,包括对 EMI 的影响。我们是以选择、构建和测试了超薄多电平转换器拓扑。从该转换器获得的实验结果,用于进一步优化操作设置和元件的选择,从而实现超过 98%的峰值效率。

EPC公司Michael de Rooij
Würth Elektronik 公司Quentin Laidebeur

IEEE Power Electronics Magazine
2021年9月
(必需订阅才能下载文章)
阅读文章

采用 eGaN FET 的高效、高密度1/8 砖1 kW LLC 谐振转换器

随着数据处理基础设施的持续快速增长,市场要求在最小的占板面积内提供更高的功率。

Power Systems Design
2021年9月
阅读文章

于严峻情况下氮化镓器件如何工作 – 将eGaN FET置于远高于数据手册的电压和电流限值下工作

最近,EPC公司对其氮化镓场效应晶体管(eGaN FET)进行了一系列测试,把它置于超出数据手册的限值下工作,从而量化和发表这些器件通过电压和电流极端应力测试的结果。

Bodo’s Power Systems
2021年5月
阅读文章

Thermal Management of Chip-Scale GaN Devices

This article discusses the challenges that thermal management raises due to increase power density, especially with chip-scale packaging (CSP). What is sometimes overlooked, however, is that CSP eGaN® power FETs and integrated circuits have excellent thermal performance when mounted on standard printed circuit board (PCBs) with simple methods for attaching heat sinks. Simulations, supported by experimental verification, examine the effect of various parameters and heat flow paths to provide guidance on designing for performance versus cost.

Bodo’s Power Systems
February, 2021
Read article

GaN Reliability Testing Beyond AEC for Automotive Lidar

An automotive application using GaN power devices in high volume is lidar(light detection and ranging) for autonomous vehicles. Lidar technology provides information about a vehicle’s surroundings, thus requiring high accuracy and reliability to ensure safety and performance. This article will discus a novel testing mechanism developed by EPC to test eGaN devices beyond the qualification requirements of the Automotive Electronics Council (AEC) for the specific use case of lidar.

Power Systems Design
December, 2020
Read article

Testing Gallium Nitride Devices to Failure Under Extreme Voltage and Current Stress

Standard qualification testing for semiconductors typically involves stressing devices at-or-near the limits specified in their data sheets for a prolonged period of time, or for a certain number of cycles, with the goal of demonstrating zero failures. By testing parts to the point of failure, an understanding of the amount of margin beyond the data sheet limits can be developed, but more importantly, an understanding of the intrinsic failure mechanisms of the semiconductor can be found.

Bodo’s Power Systems
September, 2020
Read article

增强型氮化镓功率器件的耐辐射性能

增强型氮化镓(eGaN®)技术使能新一代功率转换器,让转换器能够在更高的频率、更高的效率和前所未有的高功率密度下工作。 与硅MOSFET器件相比,eGaN器件还具有更优越的耐辐射性能。

Bodo’s Power Systems
2020年7月
阅读全文

硅片已死……分立功率器件快将消失

在超过四十年中,随着功率MOSFET器件的结构、技术和电路拓扑的创新,可满足不断增长的电力需求,因此改善了电源管理的效率和成本。 然而,在这新世纪的发展,随着硅功率MOSFET器件已经接近其理论极限,其改进速度已大为减慢。 与此同时,一种全新材料 - 氮化镓(GaN)- 正朝着新的理论性能领域的方向,稳步发展,其性能是老化的MOSFET器件的6,000倍,以及是目前市场的最优越GaN器件的300倍。

EETimes
2020年6月
阅读全文

Integrated GaN Power Stage for eMobility

Brushless DC (BLDC) motors are a popular choice and are finding increasing application in robotics, drones, electric bicycles, and electric scooters. All these applications are particularly sensitive to size, weight, cost, and efficiency. A monolithically integrated GaN power stage is demonstrated powering a 400 W capable BLDC motor with low switching losses and significant savings in size and weight.

Power Electronics Europe
May, 2020
Read article

GaN Integrated Power Stage – Redefining Power Conversion

Beyond just performance and cost improvement, the most significant opportunity for GaN technology to impact the power conversion market comes from its intrinsic ability to integrate multiple devices on the same substrate. GaN technology, as opposed to standard silicon IC technology, allows designers to implement monolithic power systems on a single chip in a more straightforward and cost-effective way.

Bodo’s Power Systems
May, 2020
Read article

Power Product News from ‘Virtual APEC’

Starting on page 13 of this story, EPC discusses with David Morrison the latest GaN developments meant for APEC. Alex Lidow, CEO and co-founder of EPC, discussed his company’s new power stage ICs, their development of GaN-based reference designs using a multi-level topology and various demos that were originally bound for APEC.

How2Power Today
April, 2020
Read article

氮化镓与48 V应用 – 目前的发展及何去何从?

中压氮化镓场效应晶体管(eGaN FET)的成本在三年前已经比等效额定功率MOSFET器件的成本更低。当时,EPC公司决心利用氮化镓场效应晶体管的性能及成本效益优势,积极研发及支持48 V输入或输出的应用。车用及计算机应用的48 V 转换逐渐成为全新的架构,也成为了功率系统的全新标准。

Power Systems Design
2020年3月31日
阅读全文

RSS
12345