EPC技術文章

Cascade of Power

Power semiconductors are used across many areas of e-mobility, with different technologies suitable for each part of a vehicle, depending on the voltage and current requirements, while emerging tech is allowing smaller systems to be implemented. With GaN and SiC technologies maturing and coming down in price, adoption is growing, and the technologies are increasingly dominating the design and development of e-mobility powertrain and power systems.

E-Mobility Engineering
March 2024
Read article

Using GaN FETs with Controllers and Gate Drivers Designed for Silicon MOSFETs

Gallium Nitride (GaN) FETs have revolutionized the power electronics industry, offering advantages such as smaller size, faster switching, higher efficiency, and lower costs compared to traditional silicon MOSFETs. However, the rapid evolution of GaN technology has sometimes outpaced the development of dedicated GaN-specific gate drivers and controllers. Consequently, circuit designers often turn to generic gate drivers designed for silicon MOSFETs, necessitating careful consideration of various factors to ensure optimal performance.

Bodo’s Power Systems
February, 2024
Read article

GaN產業版塊動盪宜普如何越級挑戰?

宜普電源轉換公司聯合創辦人暨執行長Alex Lidow表示,GaN的成本競爭力亦與Si MOSFET並駕齊驅,潛在爆發力更有過之而無不及,目前最關鍵就是得重塑諸多研究者的老舊觀念,認為GaN昂貴到碰不得。GaN的技術正迎來轉捩點,在先進運算、車用電子、太空電子及消費電子等新型應用設計多數採GaN技術,而非Si MOSFET。

DIGITIMES Asia
2023年9月
閱讀文章

宜普拚GaN成本優勢目標超車Si MOSFET

宜普電源轉換公司聯合創辦人暨執行長Alex Lidow接受DIGITIMES專訪,提到GaN主要會被應用在650V及以下市場。反之碳化矽則是主導650V以上的市場,它可望取代矽基絕緣閘極雙極性電晶體。宜普也在開發對速度及尺寸特性極為要求的400V以下市場。且致力於製造比Si功率元件擁有更高性能、更具成本競爭力的GaN元件。

DIGITIMES Asia
2023年9月
閱讀文章

利用單片氮化鎵積體電路設計解決方案以實現更高性能、縮小尺寸和降低成本

事實證明,15 V ~ 350 V 氮化鎵異質結場效應功率電晶體在功率轉換、馬達控制和光達等應用中,無論是在效率、尺寸、速度和成本方面都比矽元件更具優勢 。氮化鎵積體電路為許多高頻應用提供了多方面的系統級優勢。 氮化鎵積體電路才剛剛發展,其優勢肯定會隨著其技術發展而不斷增强。

Bodo’s Power Systems
2023年6月
閱讀文章

Power Packaging for the GaN Generation of Power Conversion

Since the launch of GaN-on-Si enhancement mode power transistors in March 2010 there has been a slow but monotonic shift towards adoption and replacement of silicon-based power MOSFETs. Initial adoption came from risk-taker visionaries in applications such as lidar, high-end audio amplifiers, robots, vehicle headlamps, and high-performance DC-DC converters. For the expansion of GaN for power conversion to get beyond the early adopters, a more user-friendly format than the WLCP needed to be developed. This format, however, needed to preserve the key attributes of small size, low RDS(on), high speed, excellent thermal conductivity, and low cost. In other words, the best package would be the least amount of package technically possible. Enter the PQFN…

Bodo’s Power Systems
March, 2023
Read article

GaN’s Evolution from Science Project to Mainstream Power Conductor

Power-conversion technologies are experiencing the first tectonic shift since the move from bipolar to MOS. That shift, of course, is due to the viral adoption of wide-bandgap power devices. At this point, GaN is more than a specialty technology; it is a broad-scale replacement for silicon MOSFETs in applications ranging from 30 V up to 650 V — a multibillion-dollar market.

Power Electronics News
December, 2022
Read article

eBook: The Next Silicon Frontier

Despite the continued progress in traditional transistor scaling, the semiconductor industry has reached an inflection point. The demand for faster, smaller, smarter, and more energy-efficient chips calls for new design and manufacturing paradigms. This eBook includes contributions from technology and market experts Malcolm Penn, Future Horizons; Tim Burgess and Bernd Westhoff, Renesas Electronics; Jean-Christophe Eloy, Yole Group; Luc Van den hove, imec; Ezgi Dogmus, Poshun Chiu, and Taha Ayari, Yole Intelligence; Alex Lidow, Efficient Power Conversion; Victor Veliadis, PowerAmerica; Richard Collins and Yu-Han Chang, IDTechEx; and Jean-René Lèquepeys, CEA-Leti.

EETimes
December, 2022
More information

Podcast: electronica 2022 preview

From Nov. 15 to 18, electronica 2022 will bring the international electronics industry together at the Munich exhibition grounds. Wide Bandgap Semiconductors, Renewable Energies, Smart Grid, and Energy Storage will be the major topics covered by the Power Electronics Forum at electronica 2022. In this podcast, onsemi president and CEO Hassane El-Khoury, Silanna Semiconductor North America CEO Mark Drucker, and of Efficient Power Conversion (EPC) CEO Alex Lidow will introduce the Power Electronics Forum. Interview with Alex Lidow starts at 31:55

EETimes
Listen to podcast

Dispelling a Myth – GaN and Motor Drivers

There is a commonly held belief in the industry that GaN devices are wasted on inverters for electric motors. After all, if the performance of the system is restricted by the use of a 20KHz PWM, then there can be little benefit in using a material that gains the majority of its advantages from faster switching speeds. However, according to Marco Palma, Director of Motor Drives Systems and Applications at EPC, there are some ways that GaN can still prove effective in that role.

Power Systems Design
September, 2022
Read Article

企業采訪 - 宜普電源轉換公司

Easy Engineering媒體採訪了宜普電源轉換公司(EPC)的市場行銷總監Renee Yawger,瞭解目前氮化鎵元件應用的情況和氮化鎵技術的未來。

Easy Engineering
2022年5月
閱讀文章

GaN vs. Silicon Smackdown

One way to tell when a new technology has passed the tipping point of adoption is by the voices advocating the status quo. The more conservative voices tend to cite older information that, given the fast change of trajectory that occurs at a tipping point, can lead to poor decisions for new designs. In the world of GaN power devices the tipping point occurred in the past two years when the rate of new GaN-based designs started to double year-on-year, and the legacy MOSFET designs started to face critical supply shortages due to their finely tuned, but less flexible supply chains. GaN devices, on the other hand, have remained in stock at most major distributors due to their relatively new and flexible supply chains utilizing older silicon foundries, but affording these foundries a new and vibrant future. In this article we will address some of the common misconceptions still showing up in articles and at conferences, usually presented by advocates of the status quo.

Bodo’s Power Systems
May, 2022
Read article

寬能隙元件建構高效節能綠世界

以碳化矽(SiC)、氮化鎵(GaN)材料為主流的寬能隙(WBG)半導體功率元件,在節能永續意識抬頭的今日成為各種電源系統應用的寵兒;2022年Tech Taipei系列研討會首度以WBG元件為題,邀請業界重量級業者,從設計、製造、測試等不同面向與現場超過400位聽眾分享最新技術與應用趨勢...

EE Times Taiwan
2022年3月
閱讀文章

功率系統採用GaN的5大誤區

我們將在本文討論客戶爲何遲遲未採用氮化鎵技術的一些最常見原因,氮化鎵技術顯然是較舊的矽基功率MOSFET的替代技術。在不深入詳細研究統計數據的情况下,按最常發生推導出一系列原因,並理解某些應用比其他應用更側重氮化鎵技術的某些特性。我們的討論僅限於額定電壓低於400 V的元件,因爲這是EPC公司的氮化鎵場效應電晶體和積體電路的重點應用。

PSD功率系統設計
2022 年3月
閱讀文章

Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review

In the field of motion control, there is a growing use of GaN devices, especially in low voltage applications. This paper provides guidelines for designers on the optimal use of GaN FETs in motor control applications, identifying the advantages and discussing the main issues.

Energies Journal
October, 2021
Download and read article

GaN Devices for Smaller, Lighter, Smoother Motor Drives

Today, the permanent magnet motor, also known as DC brushless motor (BLDC), is widely used and offers higher torque capability per cubic inch and higher dynamics when compared to other motors. So far, silicon-based power devices have been dominant in the inverter electronics, but today their performance is nearing their theoretical limits. There is an increasing need for higher power density. Gallium nitride (GaN) transistors and ICs have the best attributes to satisfy these needs.

Power Systems Design
November, 2021
Read article

FET Roundup: eGaN FETs, Next-gen SiC FETs, and “RibbonFETs” Hit the Scene

This month has been a busy one in the FET space. Here are a few FETs from EPC, UnitedSiC, and Intel that depart from traditional silicon transistors in interesting ways.

All About Circuits
October, 2021
Read article

應對用於超薄計算應用的超薄、具高功率密度的 48 V DC/DC 轉換器的電源和磁性設計挑戰

在過去十年中,計算機、顯示器、智能手機和其他消費電子系統變得更薄,同時功能也變得更强大。因此,市場對具有更高功率密度的更薄電源解决方案的需求不斷增加。本文研究了額定功率爲 250 W、超薄的48 V / 20 V轉換器,它可以採用各種非隔離型 DC/DC 降壓拓撲的可行性。我們研究了各種非隔離型拓撲的優缺點,從而瞭解拓撲如何影響功率電晶體和磁性元件的選擇,特別是電感器,因爲這兩個元件產生轉換器的大部分損耗。本文還詳細分析了爲這些應用設計薄型電感器所面對的挑戰,包括電感器損耗的因素、電感器尺寸和設計權衡,包括對EMI的影響。我們是以選擇、構建和測試了超薄多電平轉換器拓撲。從該轉換器獲得的實驗結果,用於進一步優化操作設置和元件的選擇,從而實現超過98%的峰值效率。

EPC公司Michael de Rooij
Würth Elektronik 公司Quentin Laidebeur

IEEE Power Electronics Magazine
2021年9月
(必需訂閱才能下載文章)
閱讀文章

Bodo 寬能隙專家演講 – 氮化鎵半導體專題 - 2021 年 6 月

由 Bodo Power Systems 主辦的氮化鎵行業專家圓桌會議的嘉賓包括:

  1. EPC公司的首席執行長兼共同創始人Alex Lidow
  2. Power Integrations公司的市場行銷與應用工程副總裁Doug Bailey
  3. Nexperia 公司的氮化鎵功率技術行銷戰略總監Dilder Chowdhury
  4. Navitas Semiconductor公司的市場行銷戰略高級總監Tom Ribarich

Using GaN FETs can be as simple as using Silicon FETs – an example in 48V systems

In this article, the author introduces a GaN FET compatible analog controller that yields a low bill-of-material count and give designers the ability to design a synchronous buck converter in the same simple way as using silicon FETs, and offers superior performance for 48 V power systems.

Power Electronics News
April, 2021
Read article

RSS
12