GaN Talk a blog dedicated to crushing silicon
Term: Silicon
5 post(s) found

May 10, 2023

GaN Switching Frequency: Using Gallium Nitride Technology in Next-Generation High-Frequency Circuits

Renee Yawger, Director of Marketing

Gallium nitride (GaN) is a very hard, mechanically stable wide bandgap semiconductor that is used in the production of power devices as well as RF components and light-emitting diodes (LEDs). GaN switching frequency is substantially higher than silicon, enabling power electronics designers to create smaller, more efficient, and higher-performing systems that were previously challenging to achieve with silicon technologies. 

Jan 16, 2023

Myths about Gallium Nitride Semiconductors

Renee Yawger, Director of Marketing

Gallium nitride (GaN) has emerged as the technology to offer greater efficiency, significantly reduce system size and weight, and enable entirely new applications not achievable with silicon. So, why do so many myths still prevail about GaN and what are the facts?

One of the reasons so much misinformation persists about GaN is that suppliers of the incumbent silicon technology use scare tactics including rumors of reliability problems, design challenges, high prices, and unreliable supply chains to dissuade potential GaN users.

Despite these attacks, GaN continues to gain acceptance not only in enabling applications such as lidar, but into traditional applications where the silicon MOSFET previously held the dominant position, like data centers and vehicle electronics. This article will debunk the most common myths about GaN and show how GaN FETs and GaN ICs are creating a displacement cycle in power conversion.

Jan 23, 2020

eGaN vs. Silicon

John Glaser , Ph.D., Director of Applications

This post was originally published by Dr. John Glaser & Dr. David Reusch on June 13, 2016 on the Power Systems Design web site.

Comparing Dead-time Losses for eGaN FETs and Silicon MOSFETs in Synchronous Rectifiers

There have been several comparisons of eGaN FETs with silicon MOSFETs in a variety of applications, including hard-switched, soft-switched, and high-frequency power conversion. These studies have shown that eGaN FETs have large efficiency and power density advantages over silicon MOSFETs. Here we’ll focus on the use of eGaN FETs in synchronous rectifier (SR) applications and the importance of dead-time management. We show that eGaN FETs can dramatically reduce loss due to dead-time in synchronous rectifiers above and beyond the benefits of low RDS(on)and charge.

Jul 24, 2018

What Customers Are Asking About An Amazing New Technology – GaN-based Power System Solutions

Andrea Mirenda, Vice President of Americas Sales

Enhancement-mode GaN power devices, (eGaN® FETs and ICs) provide the path for users to differentiate their end products. This new technology gives significantly higher efficiencies in the ever-present power supply and delivery circuits that fuel our gadgets and electronic equipment.

As the sales manager for the Americas, I am in the enviable position of working with customers to create a new vision of excellence so they continue to lead in their market space and contribute optimizing power consumption by reducing energy consumption.

Power systems designs introducing new technologies and approaches is always met with curiosity and evaluation. Customers always ask the most fundamental and far-reaching questions about the attributes and implementation of new technologies. Therefore, I thought documenting the most common questions I have received will help others considering the use of GaN technology pave the way to their confident adoption of this transitional technology.

May 04, 2017

GaN-on-Silicon Power Devices: How to Dislodge Silicon-Based Power MOSFETs

Alex Lidow, Ph.D., CEO and Co-founder

Gallium nitride (GaN) power transistors designed for efficient power conversion have been in production for seven years. New markets, such as light detection and ranging, envelope tracking, and wireless charging, have emerged due to the superior switching speed of GaN. These markets have enabled GaN products to achieve significant volumes, low production costs, and an enviable reliability reputation. All of this provides adequate incentive for the more conservative design engineers in applications such as dc–dc converters, ac–dc converters, and automotive to start their evaluation process. So what are the remaining barriers to the conversion of the US$12 billion silicon power metal–oxide–semiconductor field-effect transistor (MOSFET) market? In a word: confidence. Design engineers, manufacturing engineers, purchasing managers, and senior management all need to be confident that GaN will provide benefits that more than offset the risk of adopting a new technology. Let’s look at three key risk factors: supply chain risk, cost risk, and reliability risk.