GaN Talk a blog dedicated to crushing silicon
Term: GaN
37 post(s) found

eToF™ Laser Driver ICs for Advanced Autonomy Lidar

eToF™ Laser Driver ICs for Advanced Autonomy Lidar
Mar 22 2021

Co-written by Steve Colino

Laser drivers for light distancing and ranging (lidar) are used in a pulsed-power mode. What are the basic requirements for these laser drivers?

A new family of integrated laser driver ICs meets all these requirements.  The first release, the EPC21601 laser driver IC, integrates a 40 V, 10 A FET with integrated gate driver and 3.3 V logic level input in a single chip for time-of-flight (ToF) lidar systems used in robotics, surveillance systems, drones, autonomous cars, and vacuum cleaners. This chip offers frequency capability up to 200 MHz in a low inductance, economical, 1 mm x 1.5 mm BGA package.

Why GaN for DC-DC Space Designs

Why GaN for DC-DC Space Designs
Mar 03 2021

Power electronics engineers are constantly working towards designs with higher efficiency and higher power density while maintaining high reliability and minimizing cost. Advances in design techniques and improved component technologies enable engineers to consistently achieve these goals. Power semiconductors are at the heart of these designs and their improvements are vital to better performance. In this EPC space blog, we will demonstrate how GaN power semiconductors allow for innovation in the harsh radiation environments of space applications.

GaN power semiconductors offer designers in the high reliability market a sudden and significant improvement in electrical performance over their silicon power MOSFET predecessors. Table 1 compares radiation hardened GaN and Si power semiconductor device characteristics important for circuit designers to increase efficiency and power density in their converter.

How GaN is Revolutionizing Motor Drive Applications

How GaN is Revolutionizing Motor Drive Applications
Feb 09 2021

Rethinking the Ordinary and Overcoming Mental Biases

Motor drive applications span several markets: industrial, appliance, and automotive. A commonality that occurs regardless of market is that when a new technology is proposed, it faces resistance to its adoption; after all, it is human nature to stick with what is known and resist change.

New 100 V eGaN Devices Increase Benchmark Performance Over the Aging Silicon Power MOSFET

New 100 V eGaN Devices Increase Benchmark Performance Over the Aging Silicon Power MOSFET
Sep 22 2020

Efficient Power Conversion (EPC) is increasing the performance distance between the aging silicon power MOSFET and eGaN transistors with 100 V ratings.  The new fifth-generation “plus” devices have about 20% lower RDS(on) and increased DC ratings compared with the prior fifth-generation products.  This performance boost comes from the addition of a thick metal layer and a conversion from solder balls to solder bars.

Why GaN in Space?

Why GaN in Space?
Jun 28 2020

Packaged SEE Immune and Radiation Hardened enhancement mode gallium nitride (eGaN) devices offer dramatically improved performance over the aging Rad Hard silicon MOSFET, enabling a new generation of power converters in space operating at higher frequencies, higher efficiencies, and greater power densities than ever achievable before.

2020 New Year with GaN

2020 New Year with GaN
Jan 02 2020

Dear Friends, colleagues and partners of EPC,

Happy New Year to you and your family from all of us at EPC!

2019 was a year to remember for EPC’s GaN innovations and the multiple use cases for GaN that have come to fruition. EPC’s latest generation of GaN products have enabled engineers to gain power stage advantages due to their low RDS(on) characteristics, higher efficiency, enhanced thermal properties, small size and low cost. Now, more than ever, power system designers are switching from silicon devices to higher performance GaN components.

The Time for Disruption is Now − GaN Makes a Frontal Attack on Silicon Power MOSFETs

The Time for Disruption is Now − GaN Makes a Frontal Attack on Silicon Power MOSFETs
Nov 12 2019

Silicon has been around long enough. It’s time for a younger and far more fit challenger to take over semiconductor material dominance.

When I first started developing power devices 44 years ago, the “king of the hill” was the silicon power bipolar transistor.  In 1978 International Rectifier (IRF) launched power MOSFETs as a faster alternative to the slower and aging bipolar devices.  The early adopters of the power MOSFET were applications where the bipolar just was not fast enough.  The signature example for its adoption was the switching power supply for the desktop computer; first at Apple, and then at IBM

Harnessing the Power of GaN for Motor Drives – Servo drives, robotics, drones

Harnessing the Power of GaN for Motor Drives – Servo drives, robotics, drones
Sep 12 2019

With advancements in motor technology, power densities have increased; motors are built in smaller form factors and designed for higher speeds, and higher precision, which requires higher electrical frequencies.

3-phase brushless DC (BLDC) motors are compact for their power ratings, can be precisely controlled, offer high electro-mechanical efficiency, and can operate with minimal vibration when properly controlled. These motors are increasingly or exclusively used in precision applications like servo drives, robotics, such as surgical robots, and drones, such as quadcopters. To keep current ripple within a reasonable range, these motors – given their low inductance – require switching frequencies up to 100kHz. A FET that can operate efficiently at high frequency is required to minimize losses and offset the torque ripple in the motor which creates vibrations, reduces drive precision and decreases efficiency.

Design Efficient High-Density Power Solutions with GaN

Design Efficient High-Density Power Solutions with GaN
Jun 11 2019

This post was originally published by M. Di Paolo Emilio on the Power Electronic News web site.

Power switching devices based on gallium nitride technology (GaN) are in volume production now and delivering high efficiency and power density in real-world power applications. This article will examine how to implement high-power solutions with GaN technology, presenting application examples that demonstrate how GaN devices can effectively work even beyond 600 volts.

GaN devices differ from best-in-class field-effect transistors (FETs) and other silicon-based components in several important respects. GaN devices enable solutions that increase power density by two or more times over silicon-based approaches. As a result, component and package size can be reduced, yielding a solution with a smaller PCB footprint. GaN devices also offer higher efficiency than their silicon predecessors, albeit at a comparably higher overall system cost.

The Growing Ecosystem for eGaN FET Power Conversion

The Growing Ecosystem for eGaN FET Power Conversion
May 18 2019

eGaN® FET-based power conversion systems offer higher efficiency, increased power density, and lower overall system cost than Si-based alternatives. These advantageous characteristics have spurred the presence of an ever increasing ecosystem of power electronics components such as gate drivers, controllers, and passive components that specifically enhance eGaN FET performance. Some examples of eGaN FETs are shown in figure 1.