EPC Technical Articles

GaN technology will transform the future

For the first time in 60 years, a new higher-performance semiconductor technology is less expensive to produce than the silicon counterpart. Gallium nitride (GaN), has demonstrated both a dramatic improvement in transistor performance and the ability to be produced at a lower cost than silicon. GaN transistors have unleashed new applications as a result of their ability to switch higher voltages and higher currents faster than any transistor before. These extraordinary characteristics have ushered in new applications capable of transforming the future. But this is just the beginning.

Read article

By: Alex Lidow
January, 2015

Panasonic breathes new life into Technics – features GaN for high speed switching

Technics is back. Panasonic has unveiled the first new hi-fi products from the highly-regarded brand in 6 years. The new Reference Class system is made up of three components – a stereo power amp, a network audio control player and a speaker system. The amp uses a JENO Digital Engine to eliminate jitter and nip noise in the bud, and Load Adaptive Phase Calibration (LAPC) for flat amplitude-phase frequency delivery. It features GaN for high speed switching while keeping signal loss low, a proprietary digital link input, analog XLR input, analog RCA input, bi-wiring speaker terminals, and a silent linear power supply.

Read article

How to measure the world's fastest power switch

Gallium Nitride (GaN) FETS are poised to replace silicon power devices in voltage regulators and DC-DC power supplies. Their switching speeds are significantly faster and their RDS(on) is lower than silicon MOSFETS. That can lead to higher power efficiency power sources, which is good for all of us. If you're designing power circuits with GaN devices, you need a grasp of the device's switching speed.

Read article

SiC And GaN Power Semiconductors Growing At 63 Percent CAGR

The market for SiC and GaN power semiconductors is expected to grow at 63 percent CAGR between 2011 and 2017, reaching around $500 million, according to The Information Network, a US market research company.

Compound Semiconductor
October, 2014
Read the article

Power GaN Market - 80% ANNUAL GROWTH FROM 2016-2020!

Overall, 2020 could see an estimated device market size of almost $600M, leading to approximately 580,000 x 6” wafers to be processed. Ramp-up will be quite impressive starting in 2016, at an estimated 80% CAGR through 2020, based upon a scenario where EV/HEV begins adopting GaN in 2018-2019. The power supply/PFC segment will dominate the business from 2015-2018, ultimately representing 50% of device sales. At that point, automotive will then catch-up.

Yole Development
June, 2014
Read More

GaN – Moving Quickly into Entirely New Markets

Gallium Nitride (GaN) based power devices are rapidly being adopted due to their ability to operate at frequencies and switching speeds beyond the capability of Silicon power devices.

Power Electronics Europe
By: Alex Lidow, Ph.D., Johan Strydom, Ph.D., David Reusch, Ph.D.
June, 2014

PMBus, GaN, And More Dominate APEC 2014

APEC 2014 is over. Held this year in Fort Worth, Texas, the annual IEEE power electronics conference left a number of impressions. For one, gallium-nitride (GaN) power transistors are evolving in interesting ways…

Electronic Design
March, 2014

Exploring gallium nitride technology

It has been three years since the commercialization of gallium nitride (GaN) devices as MOSFET replacements in a commercial DC-DC application. With the emergence of GaN devices, coupled with now attainable applications previously not achievable with MOSFET-based FETs, a favorable stage has been set for GaN-device developers to release emerging application potential largely unimagined and untapped.

EETimes Asia
May 16, 2013

Are GaN Transistors Ready for Prime Time?

Gallium Nitride transistors have been available since Eudyna and Nitronex first introduced depletion-mode RF transistors in about 2005. Since then many new companies have entered the field with both RF transistors (e.g. RFMD, Triquint, Cree, Freescale, Integra, HRL, M/A-COM, and others), and transistors designed to replace power MOSFETs in power conversion applications (e.g. Transphorm, International Rectifier, GaN Systems, microGaN, and Efficient Power Conversion). This article discusses if this ground swell of activity mean that GaN transistors are ready to replace power MOSFETs, and, if so, why?

By Alex Lidow, Ph.D., CEO, EPC
Power Pulse.Net

Read the article

GaN – the New Frontier for Power Conversion

Due to its advantages GaN will probably become the dominant technology. GaN has a much higher critical electric field than silicon which enables this new class of devices to withstand much greater voltage from drain to source with much less penalty in on-resistance.

By Alex Lidow, PhD
Bodo’s Power Systems
June, 2010

Read the article

Can Gallium Nitride Replace Silicon?

For the past three decades, Silicon-based power management efficiency and cost have shown steady improvement. In the last few years, however, the rate of improvement has slowed as the Silicon power MOSFET has asymptotically approached its theoretical bounds. Gallium Nitride grown on top of a silicon substrate could displace Silicon across a significant portion of the power management market.

By Alex Lidow, PhD
Power Electronics Europe
Issue 2, 2010

Read the article