EPC Technical Articles

eGaN FETs Enable More Than 4-kW/in3 Power Density for 48 V to 12 V Power Conversion

Growing computational power and miniaturization of electronics in computing and data centers is increasingly putting pressure on 48-V power delivery and conversion systems. High-efficiency and high-power–density converters enable a reduction in power losses at the system level while allowing smaller form factors. In this context, LLC resonant topologies combined with GaN technology succeed to deliver outstanding performance, as it has been demonstrated with multiple examples. This article will show the key design parameters and components to achieve beyond 4 kW/in3 of power density in a 48-V to 12-V LLC converter using eGaN® FETs.

Power Electronics News
December, 2022
Read article

Dispelling Myths: Don’t believe it when they say you need a bipolar gate drive for eGaN FETs

GaN devices have gone from initial R&D to mainstream designs over the last 15 years. Unfortunately, there are many misunderstandings left-over from those early-stage bipolar drive circuit developments or dead-end technology branches. One of the most pernicious is the topic of bipolar drive. In actuality, unipolar drives are the best way to drive eGaN® FETs.

Power Electronics Tips
October, 2022
Read article

GaN vs. Silicon Smackdown

One way to tell when a new technology has passed the tipping point of adoption is by the voices advocating the status quo. The more conservative voices tend to cite older information that, given the fast change of trajectory that occurs at a tipping point, can lead to poor decisions for new designs. In the world of GaN power devices the tipping point occurred in the past two years when the rate of new GaN-based designs started to double year-on-year, and the legacy MOSFET designs started to face critical supply shortages due to their finely tuned, but less flexible supply chains. GaN devices, on the other hand, have remained in stock at most major distributors due to their relatively new and flexible supply chains utilizing older silicon foundries, but affording these foundries a new and vibrant future. In this article we will address some of the common misconceptions still showing up in articles and at conferences, usually presented by advocates of the status quo.

Bodo’s Power Systems
May, 2022
Read article

Roadblocks to GaN Adoption in Power Systems

In this article, the most common reasons for some customers to be slower in their embracing what is clearly a displacement technology for their older silicon-based power MOSFETs will be discussed. Without going into the detailed statistics, a list of reasons, in order of frequency is derived. This list is based upon the understanding that some applications will place higher emphasis than others on certain characteristics of GaN. Our discussion is limited to devices rated at less than 400 V, as that is the application focus for Efficient Power Conversion (EPC) FET and IC products.

Power Systems Design
March, 2022
Read article

Better thermal management of eGaN FETs

A few simple thermal management guidelines can help conduct heat away from GaN FETs. Enhancement-mode gallium nitride (eGaN) FETs offer high power-density with ultra-fast switching and low on-resistance, all in a compact form factor. However, the power levels these high-performance devices provide can be limited by extreme heat-flux densities. If not managed properly, the generated heat can compromise reliability and performance. Fortunately, chip-scale packaging for eGaN FETs can be leveraged at the board-side and the backside (i.e., case) to better dissipate heat.

Power Electronics Tips
February, 2022
Read article

Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review

In the field of motion control, there is a growing use of GaN devices, especially in low voltage applications. This paper provides guidelines for designers on the optimal use of GaN FETs in motor control applications, identifying the advantages and discussing the main issues.

Energies Journal
October, 2021
Download and read article

FET Roundup: eGaN FETs, Next-gen SiC FETs, and “RibbonFETs” Hit the Scene

This month has been a busy one in the FET space. Here are a few FETs from EPC, UnitedSiC, and Intel that depart from traditional silicon transistors in interesting ways.

All About Circuits
October, 2021
Read article

Power Bricks Get an Efficiency Boost with GaN

The design of an LLC resonant converter illustrates how eGaN FETs can shrink the physical size of modern supply circuitry.

Power Electronic Tips
October, 2021
Read article

Meeting the Power and Magnetic Design Challenges of Ultra-Thin, High-Power Density 48 V DC-DC Converters for Ultra-Thin Computing Applications

Over the past decade computers, displays, smart phones and other consumer electronics systems have become thinner while also becoming more powerful. As a result, the market continues to increase its demand for thinner power supply solutions with greater power density. This article examines the feasibility of adopting various non-isolated dc-dc step-down topologies for an ultra-thin 48 V to 20 V rated to 250 W. It examines the pros and cons of various non-isolated topologies and how the topology impacts the choice of the power transistors and magnetics, specifically the inductors, as these two components account for the bulk of the losses in a converter. The article also undertakes a detailed analysis of the challenges to design thin inductors for these applications, including examining the factors that drive inductor losses, inductor size, and the design tradeoffs, including the impact on EMI. For this work, an ultrathin multilevel converter topology was selected, built, and tested. The experimental results obtained from this converter were used to further refine the operating setting and component selections that resulted in a peak efficiency exceeding 98%.

Michael de Rooij, EPC
Quentin Laidebeur, Würth Elektronik

IEEE Power Electronics Magazine
September, 2021
(subscription required)
Read article

High Efficiency, High Density 1 kW LLC Resonant Converter in a 1/8th Brick Size using eGaN FETs

With the continuous and fast-paced growth of data processing infrastructures, higher power levels that can be delivered in smallest areas are demanded.

Power Systems Design
September, 2021
Read article

Extreme GaN – What Happens When eGaN FETs are Exposed to Voltage and Current Levels Well Above Data Sheet Limits

Recently, Efficient Power Conversion (EPC) did a series of tests to take eGaN® FETs beyond their data sheet limits to quantify the effects of large amounts of overstress voltage and current and the results are published here for the first time.

Bodo’s Power Systems
May, 2021
Read article

Thermal Management of Chip-Scale GaN Devices

This article discusses the challenges that thermal management raises due to increase power density, especially with chip-scale packaging (CSP). What is sometimes overlooked, however, is that CSP eGaN® power FETs and integrated circuits have excellent thermal performance when mounted on standard printed circuit board (PCBs) with simple methods for attaching heat sinks. Simulations, supported by experimental verification, examine the effect of various parameters and heat flow paths to provide guidance on designing for performance versus cost.

Bodo’s Power Systems
February, 2021
Read article

GaN Reliability Testing Beyond AEC for Automotive Lidar

An automotive application using GaN power devices in high volume is lidar(light detection and ranging) for autonomous vehicles. Lidar technology provides information about a vehicle’s surroundings, thus requiring high accuracy and reliability to ensure safety and performance. This article will discus a novel testing mechanism developed by EPC to test eGaN devices beyond the qualification requirements of the Automotive Electronics Council (AEC) for the specific use case of lidar.

Power Systems Design
December, 2020
Read article

Testing Gallium Nitride Devices to Failure Under Extreme Voltage and Current Stress

Standard qualification testing for semiconductors typically involves stressing devices at-or-near the limits specified in their data sheets for a prolonged period of time, or for a certain number of cycles, with the goal of demonstrating zero failures. By testing parts to the point of failure, an understanding of the amount of margin beyond the data sheet limits can be developed, but more importantly, an understanding of the intrinsic failure mechanisms of the semiconductor can be found.

Bodo’s Power Systems
September, 2020
Read article

Radiation Performance of Enhancement-Mode Gallium Nitride Power Devices

Enhancement-mode gallium nitride (eGaN®) technology enables a new generation of power converters in space operating at higher frequencies, higher efficiencies, and greater power densities than ever achievable before. eGaN devices also exhibit superior radiation tolerance compared with silicon MOSFETs.

Bodo’s Power Systems
June, 2020
Read article

Silicon Is Dead…and Discrete Power Devices Are Dying

For over four decades, power management efficiency and cost have improved steadily as innovations in power MOSFET structures, technology, and circuit topologies have kept pace with the growing need for electrical power. In the new millennium, however, the rate of improvement has slowed dramatically as the silicon power MOSFET approaches its theoretical bounds. At the same time, a new material, gallium nitride (GaN) is steadily progressing on its journey toward a theoretical performance boundary that is 6,000 times better than the aging silicon MOSFET and 300 times better than the best GaN products on the market today.

EETimes
June, 2020
Read article

Integrated GaN Power Stage for eMobility

Brushless DC (BLDC) motors are a popular choice and are finding increasing application in robotics, drones, electric bicycles, and electric scooters. All these applications are particularly sensitive to size, weight, cost, and efficiency. A monolithically integrated GaN power stage is demonstrated powering a 400 W capable BLDC motor with low switching losses and significant savings in size and weight.

Power Electronics Europe
May, 2020
Read article

GaN Integrated Power Stage – Redefining Power Conversion

Beyond just performance and cost improvement, the most significant opportunity for GaN technology to impact the power conversion market comes from its intrinsic ability to integrate multiple devices on the same substrate. GaN technology, as opposed to standard silicon IC technology, allows designers to implement monolithic power systems on a single chip in a more straightforward and cost-effective way.

Bodo’s Power Systems
May, 2020
Read article

Power Product News from ‘Virtual APEC’

Starting on page 13 of this story, EPC discusses with David Morrison the latest GaN developments meant for APEC. Alex Lidow, CEO and co-founder of EPC, discussed his company’s new power stage ICs, their development of GaN-based reference designs using a multi-level topology and various demos that were originally bound for APEC.

How2Power Today
April, 2020
Read article

GaN and 48 V – Where are We and Where are We Going?

Three years ago, the cost of making medium voltage eGaN FETs fell below the cost of equivalently rated power MOSFETs. At that time EPC decided to use the performance and cost advantages of eGaN FETs to aggressively pursue applications with input, or output, voltage around 48 V. Specifically, automotive and computer applications is where 48 V conversion is becoming the new architecture, the new standard for power systems.

Power Systems Design
March 31, 2020
Read article

RSS
12345