EPC Technical Articles

New Chips Provide a Spark for Wireless Charging

EPC garners the attention of MIT Technology Review with its new products targeted for wireless charging applications. Recognizing EPC as a catalyst for jump-starting the market for wireless power systems, the author highlights the need for universally accepted technology standards. He reinforces his position quoting Alex Lidow saying that “…convenience, cost, and efficiency” are all factors needed for broad adoption of any standard…

MIT Technology Review
July 15, 2015
Read article

The Mobility Imperative: Untethered Consumers!

Consumers want to be able to go wirelessly where they want, when they want. They want televisions to be seamlessly synchronized with tablets, phones, laptops, and automobiles. They want all their communication, information, and entertainment to be available immediately, with high resolution, all the time. Recently the automobile industry has caught on to this trend and has begun to show its vision of the future for the fully mobile lifestyle.

Consumers also do not want to worry about running out of battery life – no more looking for an open outlet at the airport. This untethered life is the Mobility Imperative and it is driving innovation in consumer products, which in turn, is pushing the limits of silicon-based semiconductor technology.

Nikkei Business Publications
July 10, 2015
Read Article

A dialogue focusing on wireless power transfer application using gallium nitride devices

The latest gallium nitride technology has been propelling the development of wireless power transfer application. This is especially of interest to engineers at the time just after the merger of A4WP and PMA. The interview extensively covers various areas of interests in answering the question of wider adoption of GaN devices by the semiconductor industry including differentiations of GaN devices, lowering of costs, latest device innovations, high-frequency plus small-size device operations, heat management, how GaN’s markets would surpass silicon’s markets and the future development of gallium nitride technology.

Power System Design China
June 24, 2015
Read Article

eGaN FETs Yield High Broad Load Range Wireless Energy Transfer Efficiency

eGaN® FETs have previously demonstrated higher efficiency in loosely coupled wireless power transfer solutions when operating on-resonance using either ZVS Class D or Class E amplifiers. Practical Wireless Power systems however need to address the convenience factor of such systems, which results in reflected coil impedances that can significantly deviate from resonance as load and coupling vary. These systems still need to deliver power to the load and hence the amplifier needs to drive the coils over a wide impedance range. Standards such as the A4WP class 3 have defined a broad coil impedance range that address the convenience factor and can be used as a starting point to compare the performance of the amplifiers. In this installment both the ZVS Class D and Class E amplifiers will be tested at 6.78 MHz to the A4WP class 3 standard with a reduced impedance range to determine the inherent operating range limits. Factors such as device temperature and voltage limits will determine the bounds of the load impedance range each amplifier is capable of driving.

Bodos China
June, 2015
Read Article

CMOS finds its match: GaN ignites shift in power

Speaking from an industry perspective, technologies only exist for as long as they yield the benefits and capabilities that promise man a certain advantage. That said, mainstream silicon CMOS technology has afforded the industry immeasurable gains that it has thoroughly benefitted from. The question now is this. Is the sun shining down on CMOS ready to set? An emerging class of GaN power chips is finally knocking down the final cost barriers to their adoption. The chips will enable a wide range of applications from wireless charging to autonomous vehicles and more efficient cellular communications, according to a DesignCon keynoter.

Read article
EETimes Asia
February, 2015

WiGaN: eGaN FETs in Wide Load Range High Efficiency Wireless Power

Practical wireless power systems need to address the convenience factor of such systems. Standards such as the A4WP Class 3 have defined a broad coil impedance range that address the convenience factor and can be used as a starting point to compare the performance of the amplifiers. In this installment of WiGaN both the ZVS Class-D and Class-E amplifiers will be tested at 6.78 MHz to the A4WP Class 3 standard.

Read article

Performance Evaluation of Enhancement-Mode GaN Transistors in Class-D and Class-E Wireless Power Transfer Systems

The popularity of wireless energy transfer has increased over the last few years and in particular for applications targeting portable device charging. In this article, EPC will focus on loosely coupled coils, highly-resonant wireless solutions suitable for the A4WP standard operating at either 6.78 MHz or 13.56 MHz unlicensed Industrial, Scientific and Medical (ISM) bands.

Bodo’s Power Systems
By Alex Lidow, Ph.D. and Michael De Rooij, Ph.D
May, 2014

EPC's Michael de Rooij presents Wireless Power Transfer demonstration at APEC

EPC's Michael de Rooij presenting the Wireless Power Transfer demonstration for Alix Paultre, editor, Power Systems Design magazine.

Power Systems Design
March, 2014
Watch Video

GaN — Still Crushing Silicon One Application at a Time

Enhancement-mode gallium nitride transistors have been commercially available for over four years and have infiltrated many applications previously monopolized by the aging silicon power MOSFET. There are many benefits derived from the latest generation eGaN® FETs in new emerging applications such as highly resonant wireless power transfer, RF envelope tracking, and class-D audio. This article will examine the rapidly evolving trend of conversion from power MOSFETs to gallium nitride transistors in these new applications.

Power Pulse
By: Alex Lidow
February, 2014

How To GaN: eGaN®FETs for High Frequency Wireless Power Transfer

A highly resonant, loosely coupled, 6.78 MHz ISM band wireless power transfer will be presented that show how eGaN FETs are enabling this technology. This column will show efficient wireless energy transfer using current eGaN FETs, and present examples of a voltage mode class D and class E approach.

EEWeb
By: Alex Lidow
January, 2014

GaN – Crushing Silicon One Application at a Time

Enhancement mode gallium nitride transistors have been commercially available for over four years and have infiltrated many applications previously monopolized by the aging silicon power MOSFET.

Power Pulse
By: Alex Lidow
October, 2013

EPC8000 Family Highlighted as “Green Product of the Month” in Bodo’s Power Systems

With the introduction of this family of eGaN® FETs, power systems and RF designers now have access to high performance gallium nitride power transistors enabling innovative designs not achievable with silicon.

October, 2013
Bodo's Power Systems

Highly Resonant Wireless Power Transfer System Teardown

This article is an overview of the elements needed to assemble a wireless power transfer system. The EPC9104 demonstration system from EPC showcases the high frequency, voltage, and power required for efficient wireless power transfer.

EDN Europe
March 2013
http://mag.electronics-eetimes.com/EDNE_MARCH_2013/#/26/

Enhancement Mode GaN Making Wireless Power Transmission More Efficient

January 2, 2013

In this article we show that enhancement mode GaN transistors enable significant efficiency improvements in resonant topologies and demonstrate a practical example of a wireless power transmission system operating in the 6.78 MHz range.

By Alex Lidow PhD, CEO; Michael deRooij PhD, Executive Director of Application Engineering; David Reusch PhD, Director of Application Engineering, EPC Bodo’s Power Systems (www.bodospower.com)

Read the article

eGaN® FET-Silicon Power Shoot-Out Part 9: Wireless Power

Wireless power applications are gaining popularity in many commodity products such as mobile phones chargers. Enhancement mode gallium nitride transistors offer an alternative to MOSFET technology as they can switch fast enough to be ideal for wireless power applications. This article focuses on experimental evaluation of an induction coil wireless energy system using eGaN FETs operating at 6.78 MHz designed to be suitable for multiple 5 W USB based charging loads.

By Johan Strydom, Ph.D., Vice President of Applications, EPC and Johan Strydom, Ph.D., Vice President of Applications, EPC
Power Electronics Technology

Read the article

RSS
123