News

Sign up today to get the latest news and updates from EPC on new product announcements, applications work, and much more. Sign up for EPC email updates.

eGaN FETs Yield High Broad Load Range Wireless Energy Transfer Efficiency

eGaN FETs Yield High Broad Load Range Wireless Energy Transfer Efficiency

eGaN® FETs have previously demonstrated higher efficiency in loosely coupled wireless power transfer solutions when operating on-resonance using either ZVS Class D or Class E amplifiers. Practical Wireless Power systems however need to address the convenience factor of such systems, which results in reflected coil impedances that can significantly deviate from resonance as load and coupling vary. These systems still need to deliver power to the load and hence the amplifier needs to drive the coils over a wide impedance range. Standards such as the A4WP class 3 have defined a broad coil impedance range that address the convenience factor and can be used as a starting point to compare the performance of the amplifiers. In this installment both the ZVS Class D and Class E amplifiers will be tested at 6.78 MHz to the A4WP class 3 standard with a reduced impedance range to determine the inherent operating range limits. Factors such as device temperature and voltage limits will determine the bounds of the load impedance range each amplifier is capable of driving.

Bodos China
June, 2015
Read Article

Read more

Gallium Nitride Power Transistors Priced Cheaper Than Silicon

Gallium Nitride Power Transistors Priced Cheaper Than Silicon

Last week, El Segundo, Calif.-based Efficient Power Conversion, announced that its offering two types of power transistors made from gallium nitride that it has priced cheaper than their silicon counterparts. “This is the first time that something has really been higher performance and lower cost than silicon,” CEO Alex Lidow says. “Gallium nitride has taken the torch and is now running with it.”

IEEE Spectrum
May 8, 2015
Read article

Read more

Podcast – GaN Has Finally Arrived

Podcast – GaN Has Finally Arrived

Alex Lidow, CEO and co-founder of EPC, talks with Alix Palutre of Power Systems Design on a new family of eGaN FETs that has superior performance, smaller size, high reliability, and a low price point. With this announcement, the last barrier to the widespread adoption of GaN transistors as silicon MOSFET replacements has fallen.

Power Systems Design
Press play button to listen to interview

As Moore’s Law turns 50, is there any way to save it from dying? Is it worth saving?

As Moore’s Law turns 50, is there any way to save it from dying? Is it worth saving?

Alex Lidow, the CEO of Efficient Power Conversion has made it his life’s work to prolong the lifespan of Moore’s Law. How? As Intel and others have found, traditional chip technology which relies on silicon is approaching a ceiling — pretty soon, somebody is going to make a silicon chip that is as cheap and powerful as that material allows. Lidow says he’s found a semiconducting material that is superior to silicon in many ways: gallium nitride (GaN). Both in laboratories and in practice, GaN chips have outperformed silicon in a number of use cases and are also cheaper to manufacture, building on the infrastructure required to make silicon chips while being more resilient and requiring fewer protective elements.

Read article
PandoDaily
April 21, 2015

Read more

Moore's Law at 50: The past and future

Moore's Law at 50: The past and future

“Moore’s Law is morphing into something that is about new materials,” said Alex Lidow, a semiconductor industry veteran and CEO of Efficient Power Conversion (EPC). EPC is making a possible silicon replacement, gallium nitride (GAN), which is a better conductor of electrons, giving it performance and power-efficiency advantages over silicon, Lidow said. GAN is already being used for power conversion and wireless communications, and could make its way to digital chips someday. “For the first time in 60 years there are valid candidates where it’s about superior material rather than smaller feature size,” Lidow said.

Read article
Network World
April 17, 2015

Read more

Moore’s Law Is Dead. Long Live Moore’s Law.

Moore’s Law Is Dead. Long Live Moore’s Law.

Moore’s predictions became a self-fulfilling prophecy. The computing power of chips not only did double every 24 months, they had to double every 24 months or the tech industry — and the economy at large — would suffer dire consequences, stifling innovation and economic advancement.

Read article
re/code
Alex Lidow
April 17, 2015

Read more

Adios, silicon: Why exotic designs are the future for the chips in your gadgets

Adios, silicon: Why exotic designs are the future for the chips in your gadgets

Chip advances have powered one technology revolution after another: PCs, the Internet, smartphones, smartwatches and, soon, self-driving cars. One company betting its future on III-V materials is Efficient Power Conversion, a 34-person startup led by Chief Executive Alex Lidow. EPC already is seeing steady revenue growth from devices that incorporate a III-V layer made of gallium nitride (GaN). In 2016 or 2017 he expects to adapt the gallium nitride manufacturing process to work for the logic circuits that do the thinking in computer processors. Because of gallium nitride's electrical properties, "you immediately get a thousand times potential in improvement" over conventional silicon, he said.

Read article
CNET.com
April 17, 2015

Read more

Move over, silicon. Gallium nitride chips are taking over

Move over, silicon. Gallium nitride chips are taking over

Dean Takahashi at VentureBeat profiles Alex Lidow. Silicon chips have had a decades-long run as the foundation for modern electronics. But a new kind of chip, based on the compound material gallium nitride (GaN), promises to unseat silicon because it has higher performance, less power consumption, and lower cost.

Read article
VentureBeat
April 2, 2015

Read more

Where is GaN Going?

Where is GaN Going?

Enhancement-mode gallium nitride (GaN) transistors have been commercially available for over five years. Commercially available GaN FETs are designed to be both higher performance and lower cost than state-of-the-art silicon-based power MOSFETs. This achievement marks the first time in 60 years that any technology rivals silicon both in terms of performance and cost, and signals the ultimate displacement of the venerable, but aging power MOSFET.

EDN
Alex Lidow
February 18, 2015

Read more

The Semiconductor Revolutionary

Ashlee Vance at Bloomberg Business profiles EPC. Silicon has enjoyed some serious staying power. For going on 60 years, it’s been the semiconductor of choice at the heart of transistors—the tiny switches that power the Information Age. A valley has been named after it. Many billion-dollar empires have been forged from it. And now—look away, silicon—it may finally be on the verge of being replaced.

Read more

CMOS finds its match: GaN ignites shift in power

Speaking from an industry perspective, technologies only exist for as long as they yield the benefits and capabilities that promise man a certain advantage. That said, mainstream silicon CMOS technology has afforded the industry immeasurable gains that it has thoroughly benefitted from. The question now is this. Is the sun shining down on CMOS ready to set? An emerging class of GaN power chips is finally knocking down the final cost barriers to their adoption. The chips will enable a wide range of applications from wireless charging to autonomous vehicles and more efficient cellular communications, according to a DesignCon keynoter.

Read article
EETimes Asia
February, 2015

Read more

GaN technology will transform the future

For the first time in 60 years, a new higher-performance semiconductor technology is less expensive to produce than the silicon counterpart. Gallium nitride (GaN), has demonstrated both a dramatic improvement in transistor performance and the ability to be produced at a lower cost than silicon. GaN transistors have unleashed new applications as a result of their ability to switch higher voltages and higher currents faster than any transistor before. These extraordinary characteristics have ushered in new applications capable of transforming the future. But this is just the beginning.

Read article

EDN
By: Alex Lidow
January, 2015

Read more

How to GaN: Improving Electrical and Thermal Performance

In this installment of the ‘How to GaN’ series we will discuss the 4th generation of eGaN FETs in 48 VIN applications and evaluate the thermal performance of the chipscale packaging of high voltage lateral eGaN FETs.

EEWeb
By: Alex Lidow
December, 2014

Read more

Panasonic breathes new life into Technics – features GaN for high speed switching

Technics is back. Panasonic has unveiled the first new hi-fi products from the highly-regarded brand in 6 years. The new Reference Class system is made up of three components – a stereo power amp, a network audio control player and a speaker system. The amp uses a JENO Digital Engine to eliminate jitter and nip noise in the bud, and Load Adaptive Phase Calibration (LAPC) for flat amplitude-phase frequency delivery. It features GaN for high speed switching while keeping signal loss low, a proprietary digital link input, analog XLR input, analog RCA input, bi-wiring speaker terminals, and a silent linear power supply.

Read article

Read more

Profiles in Design: Alex Lidow, Ph.D.

DesignCon 2015’s Thursday (January 29th) keynote speaker will be Dr. Alex Lidow, CEO and co-founder of Efficient Power Conversion Corporation (EPC). For most of his career, Alex has focused on improving the efficiency of power conversion in hopes of reducing the environmental impact of energy production and consumption. As an R&D engineer at International Rectifier, he co-invented the HEXFET power MOSFET. The patents from this invention brought in more than $900M. Alex holds numerous additional patents in power semiconductor technology, including basic patents in power MOSFETs as well as in GaN FETs. He recently co-authored the first textbook on GaN transistors, “GaN Transistors for Efficient Power Conversion”. You can catch Alex’s keynote speech at DesignCon 2015 on Thursday, January 29, 12:00 PM – 12:30 PM.

EDN
December 3, 2014
Read article

Read more

WiGaN: eGaN FETs in Wide Load Range High Efficiency Wireless Power

Practical wireless power systems need to address the convenience factor of such systems. Standards such as the A4WP Class 3 have defined a broad coil impedance range that address the convenience factor and can be used as a starting point to compare the performance of the amplifiers. In this installment of WiGaN both the ZVS Class-D and Class-E amplifiers will be tested at 6.78 MHz to the A4WP Class 3 standard.

Read article

Read more

How to measure the world's fastest power switch

Gallium Nitride (GaN) FETS are poised to replace silicon power devices in voltage regulators and DC-DC power supplies. Their switching speeds are significantly faster and their RDS(on) is lower than silicon MOSFETS. That can lead to higher power efficiency power sources, which is good for all of us. If you're designing power circuits with GaN devices, you need a grasp of the device's switching speed.

Read article

Read more

WiGaN: eGaN FETs for Hard-Switching Converters at High Frequency

This article presents hard-switching buck converter results switching at 10 MHz and gives a breakdown of the converter losses. It will demonstrate the unmatched high frequency performance capability currently available using eGaN® FETs and also highlight the current limitations to pushing to even higher switching frequencies.

EEWeb
By: Alex Lidow
August, 2014

Read more
RSS
First910111213151718