Sign up today to get the latest news and updates from EPC on new product announcements, applications work, and much more. Sign up for EPC email updates.
With the emergence of the 48V bus architecture, a new hybrid converter using gallium nitride (GaN) transistors can be employed which achieves a peak efficiency that exceeds 95% and with 225W/in3 power density. Of great interest for data center applications, where light load efficiency is critical for energy savings, the converter efficiency is kept higher than 90% down to a 20% load.
PowerPulse
Read article
Read more
Gallium nitride (GaN) power transistors designed for efficient power conversion have been in production for seven years. New markets, such as light detection and ranging, envelope tracking, and wireless charging, have emerged due to the superior switching speed of GaN. These markets have enabled GaN products to achieve significant volumes, low production costs, and an enviable reliability reputation. All of this provides adequate incentive for the more conservative design engineers in applications such as dc-dc converters, ac-dc converters, and automotive to start their evaluation process. So what are the remaining barriers to the conversion of the US$12 billion silicon power metal-oxide-semiconductor field-effect transistor (MOSFET) market? In a word: confidence. Design engineers, manufacturing engineers, purchasing managers, and senior management all need to be confident that GaN will provide benefits that more than offset the risk of adopting a new technology. Let's look at three key risk factors: supply chain risk, cost risk, and reliability risk.
IEEE Spectrum
Read article
Read more
With the rise of autonomous cars and electric propulsion as driving forces in automotive applications, a huge new market for power devices based on gallium nitride grown on a silicon substrate (GaN-on-Si) is emerging.
Design World
Read article
Read more
Gallium nitride(GaN)-on-silicon low voltage power devices have enabled many new applications since commercial availability began in 2010. New markets, such as light detection and ranging (LiDAR), envelope tracking, and wireless power, emerged due to the superior switching speed of GaN. These new applications have helped develop a strong supply chain, low production costs, and an enviable reliability record. All of this provides adequate incentive for the more conservative design engineers in applications, such as dc–dc converters, ac–dc converters, and automotive to start their evaluation process.
In this series, a few of the many, high volume applications taking advantage of GaN to achieve new levels of end-product differentiation will be discussed. First, it is useful to explore the factors attributing to the rapid acceleration of the adoption rate.
Power Systems Design
Read article
Read more
The reason eGaN FETs (and now ICs) are used in all the LiDAR systems for autonomous cars, and now autonomous race cars, is that they enable much higher resolution (due to extremely short laser pulses), faster image speed (due to short laser pulses), and the ability to see greater distances with high accuracy (due to fast laser pulses at very high current).
Planet Analog
Read article
Read more
For LiDAR systems to meet ever-higher performance specs, they must perform fast switching of high-current pulses, which is where a gallium-nitride power switch can step in to help.
Electronic Design
Read article
Read more
LIDAR is presently a subject of great interest, primarily due to its widespread adoption in autonomous navigation systems for vehicles, robots, drones, and other mobile machines. eGaN devices are one of the main factors in making affordable, high performance LIDAR possible in a small form factor thus further fueling the LIDAR revolution.
EDN
By John Glaser
Read article
Read more
In recent years, GaN-based power conversion has increased in popularity due to the inherent benefits of eGaN FETs over conventional Si transistors. Migrating a converter design from Si to GaN offers many system-level improvements, which require consideration of all the components in that system. This trend has subsequently spurred a growth in the ecosystem of power electronics that support GaN-based designs.
Power Systems Designs
By Edward A. Jones, Michael de Rooij, and David Reusch
Read article
Read more
As GaN-on-Si becomes more common in DC-DC converter designs, questions often arise from experienced designers about the impact of the unique characteristics of GaN transistors when used as synchronous rectifiers (SRs). In particular, the third quadrant off-state characteristics, better known as “body diode” conduction in Si MOSFETs, which is activated during converter dead-time, is of interest. For this article, the focus will be on the similarities and differences of Si MOSFETs and eGaN® FETs when operated as a “body diode” and outline their relative advantages and disadvantages.
Bodo’s Power Systems
By David Reusch & John Glaser
Read article
Read more
The increase in switching speed offered by GaN transistors requires good measurement technology, as well as good techniques to capture important details of high-speed waveforms. This article focuses on how to leverage the measurement equipment for the user’s requirement and measurement techniques to accurately evaluate high performance GaN transistors. The article also evaluates high bandwidth differential probes for use with non-ground-referenced waveforms.
EDN Network
By Suvankar Biswas , David Reusch & Michael de Rooij
Read article
Read more
EPC CEO & Co-Founder, Alex Lidow gives Lee Teschler from EE World Online a tour of the EPC booth at APEC 2018 where EPC demonstrations included a high-power density 48 V – 12 V non-isolated converter capable of delivering over 700 W. In addition, a range of 3-D real-time LiDAR imaging sensors used in autonomous vehicles were displayed. Also, a single desktop implementing a high power resonant wireless charging solution capable of generating 300 W to wirelessly power a wide range of devices including cell phones, notebook computers, monitors, wireless speakers, smart watches, and table lamps.
View videos below.
How eGaN Transistor Technology Improves LiDAR Performance
Why Gate Drivers are Joining eGaN Transistors on the Same Chip
Graphics-Intensive Applications Benefit From Power-Dense eGaN® DC-DC Converters
Read more
Wireless power charging was a big point of discussion with a number of different solutions on the APEC 2018 exhibit floor. The following wireless charging solutions had unique aspects in their strategies; let’s take a look at what I saw over the last few days.
EDN Network
By Steve Taranovich
Read article
Read more
In this video Alex Lidow, Founder and CEO of EPC, talks to Alix Paultre, Editor-in-Chief of Power Electronics News, about the various demonstrations of GaN-based solutions at the EPC booth at APEC 2018 in San Antonio, Texas. The high-frequency operation and other advanced performance advantages over Silicon enables GaN to empower applications from LIDAR to wireless power transmission. The booth exhibits include examples of these, from a real-time LIDAR demonstration to a running "wireless desk".
Power Electronics News
View video
Read more
LIDAR is made up of a laser (or arrays) capable of transmitting pulsed light over the required range of interest, and a high-speed, low-noise receiver for reflected signal analysis. A portion of this light is reflected or scattered back to the receiver according to the reflectivity of the target.
EDN Network
Read article
Read more
Alex Lidow and his team of Michael de Rooij, David Reusch, and John Glaser gave an excellent technical tutorial this morning to a packed audience of Professional Engineers (PEs). The topic was a very timely ‘Maximizing GaN FET and IC performance: Not just a drop-in replacement of MOSFETs’.
Planet Analog
Read article
Read more
Gamers may not care about the finer points of gallium nitride (eGaN) chips as evangelized by power pioneer Alex Lidow, CEO of Efficient Power Conversion (EPC). But they will care that those chips will enable a new generation of gaming laptops with much smaller power supplies than in the past.
Venture Beat
Read article
Read more
Two space travel related stories hit my desktop this week; one that rapidly generated major international headlines and one that slid very quietly onto my email screen.
The headline-hitter was the successful launch of Elon Musk’s SpaceX rocket with its payload of a Tesla sports car, complete with a dummy driver at the wheel. The second was about Gallium Nitride technology that would be suitable for space applications.
Electro Pages
Read article
Read more
SL70040SEH Low Side GaN FET Driver Powers ISL7002xSEH GaN FETs in Launch Vehicle and Satellite Power Supplies
TOKYO--(BUSINESS WIRE)--Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today announced the space industry’s first radiation-hardened, low side Gallium Nitride (GaN) field effect transistor (FET) driver and GaN FETs that enable primary and secondary DC/DC converter power supplies in launch vehicles and satellites, as well as downhole drilling and high reliability industrial applications. These devices power ferrite switch drivers, motor control driver circuits, heater control modules, embedded command modules, 100V and 28V power conditioning, and redundancy switching systems.
Business Wire
Read article
Read more
Best design practices utilize the advantages offered by eGaN FETs, including printed circuit board (PCB) layout and thermal management. As GaN transistor switching charges continue to decrease, system parasitics must also be reduced to achieve maximum switching speeds and minimize parasitic ringing typical of power converters.
Power Electronics
Read article
Read more
Developers are hard at work on the machine learning necessary for safer and more-autonomous vehicles. But all the AI in the world won’t be enough if the car relies on inadequate sensors. That was clearly demonstrated in one fatal Tesla crash that occurred in part because the car’s camera didn’t correctly identify an oncoming truck. To ensure smart vehicles have a reliable model of surrounding objects — particularly the ones the cars identify as “threats” — most rely on one or more lidars, or laser-based remote sensors.
Extreme Tech
Read article
Read more