GaN Talk a blog dedicated to crushing silicon

Oct 27, 2016

Gallium Nitride Brings Sound Quality and Efficiency to Class-D Audio

Steve Colino, Vice President, Strategic Technical Sales

Class-D audio amplifiers have traditionally been looked down upon by audiophiles, and in most cases, understandably so. Switching transistors for Class-D amplifiers have never had the right combination of performance parameters to produce an amplifier with sufficient open-loop linearity to satisfy the most critical listeners. This restricted the classical analog modulator Class-D systems to lower-power, lower-quality sound systems.

To accomplish the required headline marketing THD+N performance targets, Class-D amplifiers have had to resort to using large amounts of feedback to compensate for their poor open-loop performance. By definition, large amounts of feedback introduce transient intermodulation distortion (TIM), which introduces a ‘harshness’ that hides the warm subtleties and color of the music that were intended for the listening experience.

Oct 13, 2016

Forget Everything You Thought You Knew About Semiconductors

Alex Lidow, Ph.D., CEO and Co-founder

In past postings , we looked at the applications that have emerged because of new capabilities available with #GaN technology. We also discussed the transformational nature of some of these applications in areas like medicine, telecommunications,human-machine interfaces, and the delivery of electrical power itself (wireless power transfer). GaN technology is entering an era similar to the 80’s and 90’s when the utility of technological improvement was apparent across broad commercial markets. Consequentially, consumers will be willing to pay a premium for the life-style improvements enabled by these improvements thereby accelerating growth of GaN applications for the foreseeable future.

Sep 29, 2016

GaN Technology for the Connected Car

Alex Lidow, Ph.D., CEO and Co-founder

GaN technology is disruptive, in the best sense of the word, making possible what was once thought to be impossible – eGaN® technology is 10 times faster, significantly smaller, and with higher performance at costs comparable to silicon-based MOSFETs. The inevitability of GaN displacing the aging power MOSFET is becoming clearer with domination of most existing applications and enabling new ones.

Sep 15, 2016

Drones…Up, Up, and Away

Alex Lidow, Ph.D., CEO and Co-founder

Drones are on the rise. In fact, use of drones is only limited by our imagination – from merely recreational (think “drone races”) to delivering packages (as promised by Amazon) to a range of life-saving military uses (such as real-time battlefield imaging). Emerging high speed, small size, and highly efficient gallium nitride power semiconductors are key contributors to the expansion of drone applications, including onboard equipment such as LiDAR imaging and navigation systems and 4G/5G communication transmitters. Let’s take a look at how GaN technology and the expansion of drone applications intersect.

A drone, or more technically, an unmanned aerial vehicle (UAV) is an aircraft without a pilot on board. Control of the drone is accomplished either under remote control from the ground or under control of an onboard computer.

Although drones originated mostly in military applications, civilian drones now vastly outnumber military drones, with estimates of over 9 million consumer drones to be sold in 2016 world wide for a total market value of near $3 billion.

Aug 20, 2016

eGaN Technology Reliability and Physics of Failure - eGaN Stress Test Qualification and Capability

Chris Jakubiec, Director of Reliability and Failure Analysis

The first two installments in this series reported in detail on field reliability experience of Efficient Power Conversion (EPC) Corporation’s enhancement-mode gallium nitride (eGaN®) FETs and integrated circuits (ICs). The excellent field reliability of eGaN® devices demonstrates stress-based qualification testing is capable of ensuring reliability in customer applications. In this installment we will examine the stress tests that EPC devices are subjected to prior to being considered qualified products.

Jul 26, 2016

Rethinking Server Power Architecture in a Post-Silicon World: Getting from 48 Vin – 1 Vout Directly

David Reusch, Ph.D., Principal Scientist, VPT

The demand by our society for information is growing at an unprecedented rate. With emerging technologies, such as cloud computing and the internet of things (IoT), this trend for more and faster access to information is showing no signs of slowing. What makes the transfer of information at high rates of speed possible are racks and racks of servers, mostly located in centralized data centers.

Jul 18, 2016

eGaN Technology Reliability and Physics of Failure - Examining eGaN Field Reliability

Chris Jakubiec, Director of Reliability and Failure Analysis

Efficient Power Conversion (EPC) Corporation’s enhancement-mode gallium nitride (eGaN®) FETs and integrated circuits (ICs) are finding their way into many end user applications such as LIDAR, wireless charging, DC-DC conversion, RF base station transmission, satellite systems, and audio amplifiers.

Jul 12, 2016

eGaN Technology Reliability and Physics of Failure

Alex Lidow, Ph.D., CEO and Co-founder

Efficient Power Conversion (EPC) Corporation’s enhancement-mode gallium nitride (eGaN®) FETs continue to expand into new market applications due to the competitive performance advantages over traditional power MOSFETs. Wireless power, DC-DC conversion, RF base station transmission, satellite systems, audio amplifiers, and LiDAR are just a few example applications that can take advantage of the superior performance of eGaN FETs.

Jun 28, 2016

Emerging Applications in Medical Care Using GaN Technology

Alex Lidow, Ph.D., CEO and Co-founder

The contribution that gallium nitride semiconductor technology is making in medical applications can be measured not only in dollars saved, but also more importantly in its contribution to the speed of intervention, diagnostic accuracy and patient comfort. Because of its superior performance and small size, GaN components (FETs and ICs) are enabling end applications such as wireless power charging, higher resolution diagnostics, and precision surgical robotics. These applications are improving ways health care is being provided.

Jun 16, 2016

No Need for Power Cords Now!

Alex Lidow, Ph.D., CEO and Co-founder

Wireless Power is here and Multi-mode Solutions will Fuel its Adoption Rate

Wireless power has arrived! The 220 end-use products with embedded wireless power capability sold in 2015 provides evidence of this arrival. More recently, Dell’s demonstration of a 30 W wireless charging pad for laptops at Computex showed the expansion of this technology to mobile devices beyond the cell phone.

Companies the likes of Google and Facebook have declared that they are making charging stations conveniently available to employees. In fact, the wireless power market is estimated to grow at an 85% CAGR through 2020. It is clear that the design and manufacturing “engines” for wireless power production have started. We are on our way to realizing the prediction by Wireless Power Consortium’s (WPC) vice president of marketing development, John Perzow, when he “…envisions a phone that never dies since it will be continuously charged…It [phone] will be charging while you’re sleeping, driving, working, and practically any public place you decide to stay at.”