EPC Technical Articles

5G base station architecture: The potential semiconductor solutions

eGaN technology is expected to be one of the most important solutions to power efficiency in base station infrastructure for 5G; the peak-to-average ratios will be worse in 5G. Envelope tracking is obvious right now as one way eGaN power transistors will do this, but over the next 3 to 5 years more applications will emerge as eGaN technology progresses.

EDN
Steve Taranovich
July 17, 2015
Read Article

New Chips Provide a Spark for Wireless Charging

EPC garners the attention of MIT Technology Review with its new products targeted for wireless charging applications. Recognizing EPC as a catalyst for jump-starting the market for wireless power systems, the author highlights the need for universally accepted technology standards. He reinforces his position quoting Alex Lidow saying that “…convenience, cost, and efficiency” are all factors needed for broad adoption of any standard…

MIT Technology Review
July 15, 2015
Read article

Efficient Power Conversion (EPC) Introduces eGaN Power Integrated Circuit for a New Benchmark in Efficiency and Cost for A4WP Rezence Wireless Power Transfer

New EPC2107 and EPC2108 eGaN® power integrated circuits include monolithic half bridge and integrated bootstrap functions for A4WP compliant Class 2 and Class 3 solutions. In addition, development boards and complete wireless power solutions – transmit and receive devices – for quick and easy evaluations of these components are available.

EL SEGUNDO, Calif. — July 2015 — EPC announces the EPC2107 (100 V) and EPC2108 (60 V) eGaN half bridge power integrated circuits with integrated bootstrap FET, eliminating gate driver induced reverse recovery loses as well as the need for a high side clamp. This is the first time that a bootstrap FET has been integrated in an eGaN power circuit.

The Mobility Imperative: Untethered Consumers!

Consumers want to be able to go wirelessly where they want, when they want. They want televisions to be seamlessly synchronized with tablets, phones, laptops, and automobiles. They want all their communication, information, and entertainment to be available immediately, with high resolution, all the time. Recently the automobile industry has caught on to this trend and has begun to show its vision of the future for the fully mobile lifestyle.

Consumers also do not want to worry about running out of battery life – no more looking for an open outlet at the airport. This untethered life is the Mobility Imperative and it is driving innovation in consumer products, which in turn, is pushing the limits of silicon-based semiconductor technology.

Nikkei Business Publications
July 10, 2015
Read Article

A dialogue focusing on wireless power transfer application using gallium nitride devices

The latest gallium nitride technology has been propelling the development of wireless power transfer application. This is especially of interest to engineers at the time just after the merger of A4WP and PMA. The interview extensively covers various areas of interests in answering the question of wider adoption of GaN devices by the semiconductor industry including differentiations of GaN devices, lowering of costs, latest device innovations, high-frequency plus small-size device operations, heat management, how GaN’s markets would surpass silicon’s markets and the future development of gallium nitride technology.

Power System Design China
June 24, 2015
Read Article

Why Consolidation In The Chip Industry Matters To You

If expanding industries typically indicate vibrancy, a race to acquire and consolidate is generally reflective of the opposite – a period of slowed growth in mature, often once high-flying categories. And while many industries experience a period of stardom, followed by a sharp and steady decline, we should be extremely worried when they occur in industries that are fundamentally central to our socio-economic vitality.

Forbes
June 26, 2015
Read Article

Energy-Saving Material Gets a Boost

The effort to take advantage of gallium nitride is partly a response to technical and economic factors that have slowed improvement in silicon-based chips.  While companies are still finding ways to fabricate smaller transistors in silicon, reductions in cost and power consumption have been more difficult to achieve. But gallium-nitride circuits can switch on and off much more quickly than silicon and handle higher voltages, said Alex Lidow, EPC’s chief executive. That makes the material particularly good for chores that involve power conversion.

Wall Street Journal
June 22, 2015
Read article

Revenge Fuels Energy Fight

Power conversion involves creating tiny devices that convert electricity from one form to another, enabling all manner of electrical gadgets to function. Till now, silicon had been the preferred medium for power conversion processors, but as that element reaches the limits of its efficiency, attention has focused on new materials.

Los Angeles Business Journal
June 21, 2015
Read article

eGaN FETs Yield High Broad Load Range Wireless Energy Transfer Efficiency

eGaN® FETs have previously demonstrated higher efficiency in loosely coupled wireless power transfer solutions when operating on-resonance using either ZVS Class D or Class E amplifiers. Practical Wireless Power systems however need to address the convenience factor of such systems, which results in reflected coil impedances that can significantly deviate from resonance as load and coupling vary. These systems still need to deliver power to the load and hence the amplifier needs to drive the coils over a wide impedance range. Standards such as the A4WP class 3 have defined a broad coil impedance range that address the convenience factor and can be used as a starting point to compare the performance of the amplifiers. In this installment both the ZVS Class D and Class E amplifiers will be tested at 6.78 MHz to the A4WP class 3 standard with a reduced impedance range to determine the inherent operating range limits. Factors such as device temperature and voltage limits will determine the bounds of the load impedance range each amplifier is capable of driving.

Bodos China
June, 2015
Read Article

Gallium Nitride Power Transistors Priced Cheaper Than Silicon

Last week, El Segundo, Calif.-based Efficient Power Conversion, announced that its offering two types of power transistors made from gallium nitride that it has priced cheaper than their silicon counterparts. “This is the first time that something has really been higher performance and lower cost than silicon,” CEO Alex Lidow says. “Gallium nitride has taken the torch and is now running with it.”

IEEE Spectrum
May 8, 2015
Read article

Podcast – GaN Has Finally Arrived

Alex Lidow, CEO and co-founder of EPC, talks with Alix Palutre of Power Systems Design on a new family of eGaN FETs that has superior performance, smaller size, high reliability, and a low price point. With this announcement, the last barrier to the widespread adoption of GaN transistors as silicon MOSFET replacements has fallen.

Power Systems Design
Press play button to listen to interview

As Moore’s Law turns 50, is there any way to save it from dying? Is it worth saving?

Alex Lidow, the CEO of Efficient Power Conversion has made it his life’s work to prolong the lifespan of Moore’s Law. How? As Intel and others have found, traditional chip technology which relies on silicon is approaching a ceiling — pretty soon, somebody is going to make a silicon chip that is as cheap and powerful as that material allows. Lidow says he’s found a semiconducting material that is superior to silicon in many ways: gallium nitride (GaN). Both in laboratories and in practice, GaN chips have outperformed silicon in a number of use cases and are also cheaper to manufacture, building on the infrastructure required to make silicon chips while being more resilient and requiring fewer protective elements.

Read article
PandoDaily
April 21, 2015

Moore's Law at 50: The past and future

“Moore’s Law is morphing into something that is about new materials,” said Alex Lidow, a semiconductor industry veteran and CEO of Efficient Power Conversion (EPC). EPC is making a possible silicon replacement, gallium nitride (GAN), which is a better conductor of electrons, giving it performance and power-efficiency advantages over silicon, Lidow said. GAN is already being used for power conversion and wireless communications, and could make its way to digital chips someday. “For the first time in 60 years there are valid candidates where it’s about superior material rather than smaller feature size,” Lidow said.

Read article
Network World
April 17, 2015

Moore’s Law Is Dead. Long Live Moore’s Law.

Moore’s predictions became a self-fulfilling prophecy. The computing power of chips not only did double every 24 months, they had to double every 24 months or the tech industry — and the economy at large — would suffer dire consequences, stifling innovation and economic advancement.

Read article
re/code
Alex Lidow
April 17, 2015

Adios, silicon: Why exotic designs are the future for the chips in your gadgets

Chip advances have powered one technology revolution after another: PCs, the Internet, smartphones, smartwatches and, soon, self-driving cars. One company betting its future on III-V materials is Efficient Power Conversion, a 34-person startup led by Chief Executive Alex Lidow. EPC already is seeing steady revenue growth from devices that incorporate a III-V layer made of gallium nitride (GaN). In 2016 or 2017 he expects to adapt the gallium nitride manufacturing process to work for the logic circuits that do the thinking in computer processors. Because of gallium nitride's electrical properties, "you immediately get a thousand times potential in improvement" over conventional silicon, he said.

Read article
CNET.com
April 17, 2015

Move over, silicon. Gallium nitride chips are taking over

Dean Takahashi at VentureBeat profiles Alex Lidow. Silicon chips have had a decades-long run as the foundation for modern electronics. But a new kind of chip, based on the compound material gallium nitride (GaN), promises to unseat silicon because it has higher performance, less power consumption, and lower cost.

Read article
VentureBeat
April 2, 2015

Where is GaN Going?

Enhancement-mode gallium nitride (GaN) transistors have been commercially available for over five years. Commercially available GaN FETs are designed to be both higher performance and lower cost than state-of-the-art silicon-based power MOSFETs. This achievement marks the first time in 60 years that any technology rivals silicon both in terms of performance and cost, and signals the ultimate displacement of the venerable, but aging power MOSFET.

EDN
Alex Lidow
February 18, 2015

The Semiconductor Revolutionary

Ashlee Vance at Bloomberg Business profiles EPC. Silicon has enjoyed some serious staying power. For going on 60 years, it’s been the semiconductor of choice at the heart of transistors—the tiny switches that power the Information Age. A valley has been named after it. Many billion-dollar empires have been forged from it. And now—look away, silicon—it may finally be on the verge of being replaced.

CMOS finds its match: GaN ignites shift in power

Speaking from an industry perspective, technologies only exist for as long as they yield the benefits and capabilities that promise man a certain advantage. That said, mainstream silicon CMOS technology has afforded the industry immeasurable gains that it has thoroughly benefitted from. The question now is this. Is the sun shining down on CMOS ready to set? An emerging class of GaN power chips is finally knocking down the final cost barriers to their adoption. The chips will enable a wide range of applications from wireless charging to autonomous vehicles and more efficient cellular communications, according to a DesignCon keynoter.

Read article
EETimes Asia
February, 2015

GaN technology will transform the future

For the first time in 60 years, a new higher-performance semiconductor technology is less expensive to produce than the silicon counterpart. Gallium nitride (GaN), has demonstrated both a dramatic improvement in transistor performance and the ability to be produced at a lower cost than silicon. GaN transistors have unleashed new applications as a result of their ability to switch higher voltages and higher currents faster than any transistor before. These extraordinary characteristics have ushered in new applications capable of transforming the future. But this is just the beginning.

Read article

EDN
By: Alex Lidow
January, 2015

RSS
First1011121315171819