EPC Technical Articles

APEC 2019 Video

Efficient Power Conversion, is at the forefront of GaN-based device development. In this video, EPC CEO Alex Lidow talks with Alix Paultre about the various design-ins at the show that underscore the advantages GaN-based devices can provide.

Embedded Computer Design
View video

Silicon is Dead

EPC CEO & Co-Founder, Alex Lidow delivers a presentation entitled, Silicon is Dead in the Ridley Engineering booth at APEC 2019.

View video

PSDtv - EPC on Why Silicon is Dead at APEC 2019

In this episode of PSDtv Alex Lidow, Chief Executive Officer and Co-Founder of Efficient Power Conversion (EPC) is at APEC 2019 in Anaheim and discusses why their GaN on Silicon devices make Silicon now dead.

PSDtv
View video

It's Time to Rethink Power Semiconductor Packaging

When the issue invariably turns to the packaging of the power semiconductor – transistor, diode, or integrated circuit – the requests for improvement fall into six categories:

1. Can you make the package smaller?
2. Can you reduce the package inductance?
3. Can you make the product with lower conduction losses?
4. Can you make the package more thermally efficient?
5. Can you sell the product at a lower price?
6. Can you make the package more reliable?

Powering graphics processors from a 48-V bus

New converter topologies and power transistors promise to reduce the size and boost the efficiency of supplies that will run next-generation Artificial Intelligence (AI) platforms. In all the topologies with 48 VIN, the highest efficiency comes with using GaN devices. This is due to their lower capacitance and smaller size. With recent pricing declines in GaN power transistors, the cost comparison with silicon-based converters now strongly favors GaN in all the leading-edge solutions.

Power Electronic Tips
March, 2019
Read article

Why go for GaN?

GaN technology has matured to a point where it can challenge traditional silicon technology.  Gallium nitride(GaN)-on-silicon low voltage power devices have enabled many new applications since commercial availability began in 2010. New markets, such as light detection and ranging (LiDAR), envelope tracking, and wireless power, emerged due to the superior switching speed of GaN. These new applications have helped develop a strong supply chain, low production costs, and an enviable reliability record. All of this provides adequate incentive for the more conservative design engineers in applications, such as DC/DC converters, AC/DC converters, and automotive to start their evaluation process. In this article, the factors leading to the rapid acceleration of the adoption rate are explored.

Electronics Weekly
January 2019
Read article

Gallium nitride is the silicon of the future

Last week, Anker debuted a tiny new power brick, crediting its small size with the component it uses instead of silicon: gallium nitride (GaN). It’s the latest example of the growing popularity of this transparent, glass-like material that could one day unseat silicon and cut energy use worldwide.

The Verge
Read article

GaN-on-Silicon Power Devices: How to Dislodge Silicon-Based Power MOSFETs

Gallium nitride (GaN) power transistors designed for efficient power conversion have been in production for seven years. New markets, such as light detection and ranging, envelope tracking, and wireless charging, have emerged due to the superior switching speed of GaN. These markets have enabled GaN products to achieve significant volumes, low production costs, and an enviable reliability reputation. All of this provides adequate incentive for the more conservative design engineers in applications such as dc-dc converters, ac-dc converters, and automotive to start their evaluation process. So what are the remaining barriers to the conversion of the US$12 billion silicon power metal-oxide-semiconductor field-effect transistor (MOSFET) market? In a word: confidence. Design engineers, manufacturing engineers, purchasing managers, and senior management all need to be confident that GaN will provide benefits that more than offset the risk of adopting a new technology. Let's look at three key risk factors: supply chain risk, cost risk, and reliability risk.

IEEE Spectrum
Read article

GaN Devices Power the Next Generation of LiDAR Systems

For LiDAR systems to meet ever-higher performance specs, they must perform fast switching of high-current pulses, which is where a gallium-nitride power switch can step in to help.

Electronic Design
Read article

How eGaN FETs power LIDAR

LIDAR is presently a subject of great interest, primarily due to its widespread adoption in autonomous navigation systems for vehicles, robots, drones, and other mobile machines. eGaN devices are one of the main factors in making affordable, high performance LIDAR possible in a small form factor thus further fueling the LIDAR revolution.

EDN
By John Glaser
Read article

The Growing Ecosystem for eGaN FET Power Conversion

In recent years, GaN-based power conversion has increased in popularity due to the inherent benefits of eGaN FETs over conventional Si transistors. Migrating a converter design from Si to GaN offers many system-level improvements, which require consideration of all the components in that system. This trend has subsequently spurred a growth in the ecosystem of power electronics that support GaN-based designs.

Power Systems Designs
By Edward A. Jones, Michael de Rooij, and David Reusch
Read article

Diversity of trends in wireless power charging at APEC 2018

Wireless power charging was a big point of discussion with a number of different solutions on the APEC 2018 exhibit floor. The following wireless charging solutions had unique aspects in their strategies; let’s take a look at what I saw over the last few days.

EDN Network
By Steve Taranovich
Read article

Alex Lidow walks Alix Paultre through the EPC booth at APEC 2018

In this video Alex Lidow, Founder and CEO of EPC, talks to Alix Paultre, Editor-in-Chief of Power Electronics News, about the various demonstrations of GaN-based solutions at the EPC booth at APEC 2018 in San Antonio, Texas. The high-frequency operation and other advanced performance advantages over Silicon enables GaN to empower applications from LIDAR to wireless power transmission. The booth exhibits include examples of these, from a real-time LIDAR demonstration to a running "wireless desk".

Power Electronics News
View video

Creating LIDAR apps with GaN speed, size, and power advantages

LIDAR is made up of a laser (or arrays) capable of transmitting pulsed light over the required range of interest, and a high-speed, low-noise receiver for reflected signal analysis. A portion of this light is reflected or scattered back to the receiver according to the reflectivity of the target.

EDN Network
Read article

APEC2018: EPC Professional Education GaN Seminar

Alex Lidow and his team of Michael de Rooij, David Reusch, and John Glaser gave an excellent technical tutorial this morning to a packed audience of Professional Engineers (PEs). The topic was a very timely ‘Maximizing GaN FET and IC performance: Not just a drop-in replacement of MOSFETs’.

Planet Analog
Read article

Gaming laptops will have smaller power supplies with EPC’s gallium nitride chips

Gamers may not care about the finer points of gallium nitride (eGaN) chips as evangelized by power pioneer Alex Lidow, CEO of Efficient Power Conversion (EPC). But they will care that those chips will enable a new generation of gaming laptops with much smaller power supplies than in the past.

Venture Beat
Read article

Will GaN and the Tesla SpaceX car survive space radiation? Yes and no.

Two space travel related stories hit my desktop this week; one that rapidly generated major international headlines and one that slid very quietly onto my email screen.

The headline-hitter was the successful launch of Elon Musk’s SpaceX rocket with its payload of a Tesla sports car, complete with a dummy driver at the wheel. The second was about Gallium Nitride technology that would be suitable for space applications.

Electro Pages
Read article

Renesas Electronics Ships Space Industry’s First Radiation-Hardened 100V and 200V GaN FET Power Supply Solutions

SL70040SEH Low Side GaN FET Driver Powers ISL7002xSEH GaN FETs in Launch Vehicle and Satellite Power Supplies

TOKYO--(BUSINESS WIRE)--Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today announced the space industry’s first radiation-hardened, low side Gallium Nitride (GaN) field effect transistor (FET) driver and GaN FETs that enable primary and secondary DC/DC converter power supplies in launch vehicles and satellites, as well as downhole drilling and high reliability industrial applications. These devices power ferrite switch drivers, motor control driver circuits, heater control modules, embedded command modules, 100V and 28V power conditioning, and redundancy switching systems.

Business Wire
Read article

Best Practices for Integrating eGaN FETs

Best design practices utilize the advantages offered by eGaN FETs, including printed circuit board (PCB) layout and thermal management. As GaN transistor switching charges continue to decrease, system parasitics must also be reduced to achieve maximum switching speeds and minimize parasitic ringing typical of power converters.

Power Electronics
Read article

Lidar: A Gold Rush Is On to Help Your Car See Better

Developers are hard at work on the machine learning necessary for safer and more-autonomous vehicles. But all the AI in the world won’t be enough if the car relies on inadequate sensors. That was clearly demonstrated in one fatal Tesla crash that occurred in part because the car’s camera didn’t correctly identify an oncoming truck. To ensure smart vehicles have a reliable model of surrounding objects — particularly the ones the cars identify as “threats” — most rely on one or more lidars, or laser-based remote sensors.

Extreme Tech
Read article

RSS
1234567