News

Sign up today to get the latest news and updates from EPC on new product announcements, applications work, and much more. Sign up for EPC email updates.

Efficient Power Conversion (EPC) Widens the Performance Gap with 7 mΩ 200 V, and 5 mΩ 150 V Gallium Nitride Power Transistors

Efficient Power Conversion (EPC) Widens the Performance Gap with 7 mΩ 200 V, and 5 mΩ 150 V Gallium Nitride Power Transistors

eGaN®power transistors continue to raise the bar for power conversion performance. Lower on-resistance, lower capacitance, higher current, and superior thermal performance enable high power density converters.

EL SEGUNDO, Calif.—May 2015 — Efficient Power Conversion Corporation (EPC) announces the introduction of two eGaN FETs that raise the bar for power conversion performance. These products have a maximum operating temperature of 150°C and pulsed currents capabilities of 260 A (150 V EPC2033) and 140 A (EPC2034). Applications include DC-DC converters, synchronous rectification in DC/DC and AC/DC converters, motor drives, LED lighting, and industrial automation.

Read more

IDT and EPC Collaborate to Integrate Gallium Nitride and Silicon for Faster, Higher Efficiency Semiconductor Devices

IDT and EPC Collaborate to Integrate Gallium Nitride and Silicon for Faster, Higher Efficiency Semiconductor Devices

Integrated Device Technology, Inc. (IDT®) (NASDAQ: IDTI) today announced its collaboration with Efficient Power Conversion (EPC) to develop technology based on Gallium nitride (GaN), a semiconductor material widely recognized for its speed and efficiency. Under their collaboration, the companies will explore integrating EPC’s eGaN® technology with leading IDT solutions.

Read full press release

Read more

Efficient Power Conversion (EPC) Expands Wide Pitch eGaN FET Family Enabling High Current in Small Footprint

Efficient Power Conversion (EPC) Expands Wide Pitch eGaN FET Family Enabling High Current in Small Footprint

New eGaN® power transistors extend EPC’s power transistor portfolio with high performance, wider pitch chip-scale package for ease of high volume manufacturing and enhanced compatibility with mature manufacturing processes and assembly lines

EL SEGUNDO, Calif.—May 2015 — Efficient Power Conversion Corporation (EPC) announces the introduction of three eGaN FETs designed with a wider pitch connection layout. These products expand EPC’s family of “Relaxed Pitch” devices featuring a 1 mm ball pitch. The wider pitch allows for placement of additional and larger vias under the device to enable high current carrying capability despite the extremely small 2.6 mm x 4.6 mm footprint.

Read more

Gallium Nitride Power Transistors Priced Cheaper Than Silicon

Gallium Nitride Power Transistors Priced Cheaper Than Silicon

Last week, El Segundo, Calif.-based Efficient Power Conversion, announced that its offering two types of power transistors made from gallium nitride that it has priced cheaper than their silicon counterparts. “This is the first time that something has really been higher performance and lower cost than silicon,” CEO Alex Lidow says. “Gallium nitride has taken the torch and is now running with it.”

IEEE Spectrum
May 8, 2015
Read article

Read more

Podcast – GaN Has Finally Arrived

Podcast – GaN Has Finally Arrived

Alex Lidow, CEO and co-founder of EPC, talks with Alix Palutre of Power Systems Design on a new family of eGaN FETs that has superior performance, smaller size, high reliability, and a low price point. With this announcement, the last barrier to the widespread adoption of GaN transistors as silicon MOSFET replacements has fallen.

Power Systems Design
Press play button to listen to interview

Efficient Power Conversion (EPC) Launches New eGaN Power Transistors That Break Silicon’s Previously Unmatched Cost-Speed Barriers

Efficient Power Conversion (EPC) Launches New eGaN Power Transistors That Break Silicon’s Previously Unmatched Cost-Speed Barriers

New family of eGaN power transistors offer superior performance, smaller size, and high reliability…at the price of a MOSFET.

EL SEGUNDO, Calif.— April 2015 — Efficient Power Conversion Corporation (EPC) announces the 60 V EPC2035 and 100 V EPC2036 eGaN power transistors designed to compete in price, while outperforming silicon. Price, the last barrier to widespread adoption of GaN transistors as silicon MOSFET replacements, has fallen. These products demonstrate that gallium nitride can displace silicon semiconductors and drive the industry back onto the Moore’s Law growth curve.

Read more

As Moore’s Law turns 50, is there any way to save it from dying? Is it worth saving?

As Moore’s Law turns 50, is there any way to save it from dying? Is it worth saving?

Alex Lidow, the CEO of Efficient Power Conversion has made it his life’s work to prolong the lifespan of Moore’s Law. How? As Intel and others have found, traditional chip technology which relies on silicon is approaching a ceiling — pretty soon, somebody is going to make a silicon chip that is as cheap and powerful as that material allows. Lidow says he’s found a semiconducting material that is superior to silicon in many ways: gallium nitride (GaN). Both in laboratories and in practice, GaN chips have outperformed silicon in a number of use cases and are also cheaper to manufacture, building on the infrastructure required to make silicon chips while being more resilient and requiring fewer protective elements.

Read article
PandoDaily
April 21, 2015

Read more

Moore's Law at 50: The past and future

Moore's Law at 50: The past and future

“Moore’s Law is morphing into something that is about new materials,” said Alex Lidow, a semiconductor industry veteran and CEO of Efficient Power Conversion (EPC). EPC is making a possible silicon replacement, gallium nitride (GAN), which is a better conductor of electrons, giving it performance and power-efficiency advantages over silicon, Lidow said. GAN is already being used for power conversion and wireless communications, and could make its way to digital chips someday. “For the first time in 60 years there are valid candidates where it’s about superior material rather than smaller feature size,” Lidow said.

Read article
Network World
April 17, 2015

Read more

Moore’s Law Is Dead. Long Live Moore’s Law.

Moore’s Law Is Dead. Long Live Moore’s Law.

Moore’s predictions became a self-fulfilling prophecy. The computing power of chips not only did double every 24 months, they had to double every 24 months or the tech industry — and the economy at large — would suffer dire consequences, stifling innovation and economic advancement.

Read article
re/code
Alex Lidow
April 17, 2015

Read more

Adios, silicon: Why exotic designs are the future for the chips in your gadgets

Adios, silicon: Why exotic designs are the future for the chips in your gadgets

Chip advances have powered one technology revolution after another: PCs, the Internet, smartphones, smartwatches and, soon, self-driving cars. One company betting its future on III-V materials is Efficient Power Conversion, a 34-person startup led by Chief Executive Alex Lidow. EPC already is seeing steady revenue growth from devices that incorporate a III-V layer made of gallium nitride (GaN). In 2016 or 2017 he expects to adapt the gallium nitride manufacturing process to work for the logic circuits that do the thinking in computer processors. Because of gallium nitride's electrical properties, "you immediately get a thousand times potential in improvement" over conventional silicon, he said.

Read article
CNET.com
April 17, 2015

Read more

Efficient Power Conversion (EPC) Introduces Monolithic Gallium Nitride Power Transistor Half Bridge Enabling over 97% System Efficiency for a 48 V to 12 V Point of Load Converter at 22 A Output

Efficient Power Conversion (EPC) Introduces Monolithic Gallium Nitride Power Transistor Half Bridge Enabling over 97% System Efficiency for a 48 V to 12 V Point of Load Converter at 22 A Output

With the new 100 V EPC2104 eGaN®half bridge, a system efficiency of a complete buck converter using the EPC2104 is greater than 97% at 22 A switching at 300 kHz, and approaching 97% at 22 A when switching at 500 kHz, achieved when converting from 48 V to 12 V.

EL SEGUNDO, Calif. — April 2015 — EPC announces the EPC2104, 100 V enhancement-mode monolithic GaN transistor half bridge. By integrating two eGaN® power FETs into a single device, interconnect inductances and the interstitial space needed on the PCB are eliminated, resulting in a 50% reduction in board area occupied by the transistors. This increases both efficiency (especially at higher frequencies) and power density, while reducing assembly costs to the end user’s power conversion system.

Read more

Efficient Power Conversion (EPC) Introduces Wide Pitch eGaN FETs Enabling High Current in Small Footprint

Efficient Power Conversion (EPC) Introduces Wide Pitch eGaN FETs Enabling High Current in Small Footprint

New EPC2029 eGaN® power transistor extends EPC’s power transistor portfolio with high performance, wider pitch chip-scale package for ease of high volume manufacturing and enhanced compatibility with mature manufacturing processes and assembly lines.

EL SEGUNDO, Calif.—April 2015 — Efficient Power Conversion Corporation (EPC) announces the introduction of an eGaN FET designed with a wider pitch connection layout. The first in a new family of “Relaxed Pitch” devices, the EPC2029 80 V, 31 A eGaN FET features a 1 mm ball pitch. The wider pitch allows for placement of additional and larger vias under the device to enable high current carrying capability despite the extremely small 2.6 mm x 4.6 mm footprint.

Read more

Move over, silicon. Gallium nitride chips are taking over

Move over, silicon. Gallium nitride chips are taking over

Dean Takahashi at VentureBeat profiles Alex Lidow. Silicon chips have had a decades-long run as the foundation for modern electronics. But a new kind of chip, based on the compound material gallium nitride (GaN), promises to unseat silicon because it has higher performance, less power consumption, and lower cost.

Read article
VentureBeat
April 2, 2015

Read more

Efficient Power Conversion (EPC) Expands Family of Plug and Play DrGaNPLUS Evaluation Boards – High Power Converters in a Small Footprint

Efficient Power Conversion (EPC) Expands Family of Plug and Play DrGaNPLUS Evaluation Boards – High Power Converters in a Small Footprint

DrGaNPLUS EPC9201 30 V, 40 A and EPC9203 80 V, 20 A evaluation boards demonstrate the extreme size reduction and efficiency enhancement for power conversion that can be achieved using high frequency switching eGaN power transistors.

EL SEGUNDO, Calif.— March 2015 — Providing an easy-to-use way for power systems designers to evaluate the exceptional performance of gallium nitride transistors and get their products into volume production quickly, Efficient Power Conversion Corporation (EPC) announces the expansion of its portfolio of DrGaNPLUS evaluation boards. These boards are proof-of-concept designs that integrate all necessary components of a half-bridge circuit into a single, extremely small PCB-based module that can be readily mounted to demonstrate the excellent performance of a GaN transistor power conversion solution.

Read more

500 Watt Eighth Brick DC-DC Converter Achieves 96.7% Efficiency – EPC Demonstration Board Featuring eGaN FETs Delivers Fully Regulated, Isolated Output 12 V, 42 A Output

500 Watt Eighth Brick DC-DC Converter Achieves 96.7% Efficiency – EPC Demonstration Board Featuring eGaN FETs Delivers Fully Regulated, Isolated Output 12 V, 42 A Output

EPC9115 DC-DC bus converter showcases superior performance achieved using eGaN FETS with designated drivers in a conventional fully regulated, isolated eighth brick DC-DC converter topology.

EL SEGUNDO, Calif. — March 2015 — Efficient Power Conversion Corporation (EPC) introduces the EPC9115, a demonstration design for a 12 V, 42 A output with an input range of 48 V to 60 V. The demonstration board features enhancement-mode (eGaN®) power transistors – the EPC2020 (60 V) and EPC2021 (80V) – along with the LM5113 half-bridge driver and UCC27611 low side driver from Texas Instruments. The power stage is a conventional hard-switched 300 kHz isolated buck converter.

Read more

Efficient Power Conversion Corporation (EPC) Publishes Wireless Power Handbook, a Guide to Designing an Efficient Amplifier for a Wireless Power Transfer System

Efficient Power Conversion Corporation (EPC) Publishes Wireless Power Handbook, a Guide to Designing an Efficient Amplifier for a Wireless Power Transfer System

Wireless Power Handbook is a guide to designing an efficient amplifier for a wireless power transfer system, taking advantage of the superior performance of gallium nitride power transistors.

EL SEGUNDO, Calif. – March 2015 – Efficient Power Conversion Corporation (www.epc-co.com) announces the publication of a practical engineering handbook designed to provide power system design engineers valuable experiences and points of reference critical to understanding and designing highly efficient wireless power systems using gallium nitride-based transistors. As a supplement to EPC’s GaN Transistors for Efficient Power Conversion, this new practical guide provides step-by-step analysis on the use of GaN transistors in wireless power transfer. /p> Read more

Where is GaN Going?

Where is GaN Going?

Enhancement-mode gallium nitride (GaN) transistors have been commercially available for over five years. Commercially available GaN FETs are designed to be both higher performance and lower cost than state-of-the-art silicon-based power MOSFETs. This achievement marks the first time in 60 years that any technology rivals silicon both in terms of performance and cost, and signals the ultimate displacement of the venerable, but aging power MOSFET.

EDN
Alex Lidow
February 18, 2015

Read more

Bloomberg TV Interviews Alex Lidow

Bloomberg TV Interviews Alex Lidow

EPC’s CEO and Co-Founder, Alex Lidow, has spent much of his career developing a superefficient replacement for silicon. Hear his interview on Bloomberg TV.

View video
Bloomberg TV
February 17, 2015

Read more

The Semiconductor Revolutionary

Ashlee Vance at Bloomberg Business profiles EPC. Silicon has enjoyed some serious staying power. For going on 60 years, it’s been the semiconductor of choice at the heart of transistors—the tiny switches that power the Information Age. A valley has been named after it. Many billion-dollar empires have been forged from it. And now—look away, silicon—it may finally be on the verge of being replaced.

Read more
RSS
First2122232426282930Last