EPC Technical Articles

Utilizing GaN Inverters for Battery-Powered Motor Drive Applications

GaN transistors and ICs increase power density in motor drive applications. An optimal lay-out approach allows obtaining ring-free output switching waveforms and clean current reconstruction signals either from leg shunts or from in-phase shunts.

EEPower
October, 2021
Read article

LiDAR System Design of ToF Laser Driver with GaN

The new gallium nitride (GaN) family aims to deliver time-of-flight (ToF) applications for autonomous cars and 3D sensing across the consumer and industrial sectors. In an interview with EE Times, Alex Lidow, CEO at EPC, highlighted how introducing the eToF Laser Driver family’s for LiDAR system design at a low cost competes with the Mosfet when it comes to LiDAR applications.

EEWeb
September, 2021
Read article

Exploring the Frontiers of GaN Power Devices

Gallium nitride (GaN) power semiconductors allow for innovation in the harsh radiation environments of space applications.

Electronics Weekly
September, 2021
Read article

Meeting the Power and Magnetic Design Challenges of Ultra-Thin, High-Power Density 48 V DC-DC Converters for Ultra-Thin Computing Applications

Over the past decade computers, displays, smart phones and other consumer electronics systems have become thinner while also becoming more powerful. As a result, the market continues to increase its demand for thinner power supply solutions with greater power density. This article examines the feasibility of adopting various non-isolated dc-dc step-down topologies for an ultra-thin 48 V to 20 V rated to 250 W. It examines the pros and cons of various non-isolated topologies and how the topology impacts the choice of the power transistors and magnetics, specifically the inductors, as these two components account for the bulk of the losses in a converter. The article also undertakes a detailed analysis of the challenges to design thin inductors for these applications, including examining the factors that drive inductor losses, inductor size, and the design tradeoffs, including the impact on EMI. For this work, an ultrathin multilevel converter topology was selected, built, and tested. The experimental results obtained from this converter were used to further refine the operating setting and component selections that resulted in a peak efficiency exceeding 98%.

Michael de Rooij, EPC
Quentin Laidebeur, Würth Elektronik

IEEE Power Electronics Magazine
September, 2021
(subscription required)
Read article

High Efficiency, High Density 1 kW LLC Resonant Converter in a 1/8th Brick Size using eGaN FETs

With the continuous and fast-paced growth of data processing infrastructures, higher power levels that can be delivered in smallest areas are demanded.

Power Systems Design
September, 2021
Read article

Why Motors are Smaller, Faster, and More Precise with GaN

With the growing adoption of and increasing applications for GaN, Bodo Arlt has taken the opportunity to talk to EPC’s CEO and Co-Founder, Alex Lidow to discuss what he believes is the next big market for this evolving technology

Bodo’s Power Systems
September, 2021
Read article

Bodo’s Wide Bandgap Expert Talk - GaN Session - June 2021

A roundtable discussion with GaN industry experts hosted by Bodo’s Power Systems. Guests included:

  1. Alex Lidow, CEO and co-founder of Efficient Power Conversion
  2. Doug Bailey, Vice President Marketing & Applications Engineering at Power Integrations
  3. Dilder Chowdhury, Director, Strategic Marketing, Power GaN Technology at Nexperia
  4. Tom Ribarich, Sr. Director Strategic Marketing at Navitas Semiconductor

The Next Wave of GaN and SiC

Gallium nitride and silicon carbide are designated wide-bandgap (WBG) semiconductors based on the energy required to shift electrons in these materials from the valence to the conduction band — about 3.2 eV for SiC and 3.4 eV for GaN, compared with just 1.1 eV for silicon. The WBG properties lead to a higher applicable breakdown voltage, which can reach up to 1,700 V in some applications. At this year’s digital only PCIM Europe, held in May, several companies showed their latest innovations in GaN and SiC and offered insights on where WBG technology is headed.

EE Times – Europe
July, 2021
Read article

Microchip and EPC Combat Radiation With New Rad-hard FETs

Technology for space applications has been an important part of 2021, thus more components are coming out that are rad-hard. Recently, two new FETS have come out, what do they bring to this space?

All About Circuits
June, 2021
Read article

1.5kW GaN Inverter for Battery-Powered Motor Drive Applications

GaN transistors and ICs increase power density in motor drive applications. An optimal lay-out approach allows obtaining ring-free output switching waveforms and clean current reconstruction signals either from leg shunts or from in-phase shunts.

Bodo’s Power Systems
June, 2021
Read article

Product roundup: GaN power semiconductors gain traction

(Image: Yole)

Manufacturers of GaN power semiconductors showcased their latest products, from 100 V to 650-V devices at PCIM Europe. PCIM Europe showcased several presentations about the benefits and use cases of wide bandgap (WGG) semiconductors, including gallium nitride (GaN) and silicon carbide (SiC). Several manufacturers, including EPC, GaN Systems, Infineon, Nexperia, and STMicroelectronics announced several new families of GaN power semiconductors during the week.

Electronic Products
May, 2021
Read article

Extreme GaN – What Happens When eGaN FETs are Exposed to Voltage and Current Levels Well Above Data Sheet Limits

Recently, Efficient Power Conversion (EPC) did a series of tests to take eGaN® FETs beyond their data sheet limits to quantify the effects of large amounts of overstress voltage and current and the results are published here for the first time.

Bodo’s Power Systems
May, 2021
Read article

Using GaN FETs can be as simple as using Silicon FETs – an example in 48V systems

In this article, the author introduces a GaN FET compatible analog controller that yields a low bill-of-material count and give designers the ability to design a synchronous buck converter in the same simple way as using silicon FETs, and offers superior performance for 48 V power systems.

Power Electronics News
April, 2021
Read article

GaN ePower Stage IC-Based Inverter for Battery-Powered Motor Drive Applications

GaN transistors and ICs allow increasing power density in motor drive applications by eliminating electrolytic capacitors in the input filter. The superior switching behavior of GaN helps to remove dead time and obtain un-matched sinusoidal voltage and current waveforms for smoother, silent operation.

Bodo’s Power Systems
April, 2021
Read article

Redefining Power Conversion with Gallium Nitride (GaN) Integrated Circuits

GaN technology is developing rapidly with frequent releases of new generations of discrete devices that become the platform for new generations of more efficient, smaller, and lower cost integrated circuits. GaN integrated circuits make products smaller, faster, more efficient, and easier to design.

Power Systems Design
March, 2021 (page 36)
Read article

How GaN Integrated Circuits Are Redefining Power Conversion

Gallium nitride (GaN) power devices have been in production for over 10 years and, beyond just performance and cost improvements, the most significant opportunity for GaN technology to impact the power conversion market comes from the intrinsic ability to integrate multiple devices on the same substrate. This capability will allow monolithic power systems to be designed on a single chip in a more straightforward, higher efficiency, and more cost-effective way.

Power Electronic News
March, 2021
Read article

Laser Driver IC Could Spur Burst Of Activity In Lidar Applications

New family of laser driver IC products will enable faster adoption and increased ubiquity of ToF solutions across a wider array of end-user applications.

How2Power
March, 2021
Read article

Minimizing Thermo-mechanical Stress in Chipscale eGaN Devices

Enhancement-mode gallium nitride (eGaN) FETs have demonstrated excellent thermomechanical reliability in actual operation in the field or when tested according to AEC or JEDEC standards. This is because of the inherent simplicity of the “package,” the lack of wire bonds, dissimilar materials, or mold compound. Recently, an extensive study of underfill products was conducted to experimentally generate lifetime predictions. A finite element analysis at the end of this section explains the experimental results and generates guidelines for selection of underfill based on key material properties.

Bodo's Power
March, 2021
Read article

GaN Is Revolutionizing Motor Drive Applications

In last month’s Safety & Compliance column in How2Power, “WBG Semiconductors Pose Safety And EMI Challenges In Motor Drive Applications,”[1]Kevin Parmenter made some assertions about the difficulties of using SiC, and to a lesser extent GaN, power semiconductors in large motor-drive applications. This commentary is a response to that article, showing that GaN can be a game changer in low-voltage integrated motors.

How2Power
February, 2021
Read article

GaN for High Density Servers

Gallium nitride (GaN) devices offer performance in a small form factor, increasing the efficiency, and reducing the system cost for 48 V power conversion applications. They have been adopted in high volumes in high density computing, as well as many new automotive power system designs.

Electronic Specifier
February, 2021
Read article

RSS
123578910Last