News

Sign up today to get the latest news and updates from EPC on new product announcements, applications work, and much more. Sign up for EPC email updates.

Predicting GaN Device Lifetimes In Solar Microinverters And Power Optimizers

Predicting GaN Device Lifetimes In Solar Microinverters And Power Optimizers

Microinverters and power optimizers are widely utilized in modern solar panels to maximize energy efficiency and conversion. Such topologies and implementations usually require a minimum of 25 years of lifetime, which is becoming a critical challenge for market adoption. Low-voltage gallium nitride (GaN) power devices (VDS rating < 200 V) are a promising solution and are being used extensively by an increasing number of solar manufacturers.

In this article, a test-to-fail approach is adopted and applied to investigate the intrinsic underlying wear-out mechanisms of GaN transistors. The study enables the development of physics-based lifetime models that can accurately project the lifetimes under the unique demands of various mission profiles in solar applications.

How2Power
August, 2023
Read article

Read more

A high efficiency, 3 kW capable, 2-phase, 3-level Converter using paralleled eGaN FETs

A high efficiency, 3 kW capable, 2-phase, 3-level Converter using paralleled eGaN FETs

As the revolution of renewable energy as well as transportation electrification progresses, the need for residential energy storage systems is increasing. A high efficiency DC-to-DC converter is usually required to exchange energy generated from renewable sources, such as solar panels, with a battery. The fast-switching speed and low RDS(on) of gallium nitride (GaN) FETs can help save energy by reducing power consumption inside the DC-to-DC converter. This article shows how to design a high efficiency 100 – 250 V to 40 - 60 V DC-to-DC converter.

Power Electronics Europe
May, 2023
Read article

Read more

The Evolution of Low Voltage Power Distribution in Automotive Electronics – From ICE to MHEV to BEV

The Evolution of Low Voltage Power Distribution in Automotive Electronics – From ICE to MHEV to BEV

Automotive electronics have gone through several eras of evolution in the past 30 years. From the pure internal combustion engines (ICE) that had mostly mechanical, or engine-driven systems, to the mild hybrid (MHEV) with the addition of electrical motivation, to the fully battery-electric car (BEV). In each of these three eras, the architecture, and even the basic semiconductor components for converting and distributing electrical power changed. This article discusses this evolution and makes some speculations about likely further evolutionary directions.

Power Systems Design
August, 2023
Read article

Read more

Accurate Characterization of Low-Voltage, Small-Form–Factor GaN FETs

Accurate Characterization of Low-Voltage, Small-Form–Factor GaN FETs

Lower-voltage GaN FETs are reducing size, minimizing cooling requirements and improving efficiency.

Lower-voltage GaN FETs (i.e., 100 V) are reducing size, minimizing cooling requirements and improving efficiency for many traditional Si-based power MOSFET applications. In this article, the challenges to repeatably and reliable characterization of the dynamic performance of these devices is discussed. Careful and thoughtful mechanical and electrical design of a customized GaN fixture and test board can overcome many of these challenges, enabling the confident use of these new WBG devices in your power-converter designs.

Power Electronics News
July, 2023
Read article

Read more

In-situ RDS(on) Characterization and Lifetime Projection of GaN HEMTs under Repetitive Overvoltage Switching

In-situ RDS(on) Characterization and Lifetime Projection of GaN HEMTs under Repetitive Overvoltage Switching

Transient voltage overshoot is a common phenomenon in GaN high electron mobility transistors (HEMTs) under high slew rate switching conditions. The dynamic parametric instability under such stress is a critical concern for GaN applications. This work, for the first time, accurately characterized the evolution of dynamic on-resistance (RDS(on)) in GaN HEMTs under repetitive voltage overshoot up to billions of switching cycles. The dynamic RDS(on) increase was found to be the dominant device degradation under overvoltage switching. Such findings were obtained from a high-frequency, repetitive, unclamped inductive switching (UIS) test with active temperature control and accurate in-situ RDS(on) monitoring. A physics-based model was proposed to correlate the dynamic RDS(on) drift with the peak overvoltage, and a good agreement with experimental data was achieved. This model was further used to project the lifetime of GaN HEMTs. For 100 V rated GaN HEMTs switched under 100 kHz and 120 V spikes, the model projects less than 10% dynamic RDS(on) shift over 25 years of continuous operation. This work addresses the major concerns of overvoltage switching reliability of GaN HEMTs and provides new insights of the electron trapping mechanism.

IEEE Xplore
Ruizhe Zhang, Ricardo Garcia, Robert Strittmatter, Yuhao zhang, Shengke Zhange
Read article (IEEE subscription required)

Read more

Improving Performance While Reducing Size and Cost with Monolithic GaN Integration

Improving Performance While Reducing Size and Cost with Monolithic GaN Integration

Gallium Nitride (GaN) heterojunction field effect power transistors in the 15 V to 350 V range have shown to give significant advantages over silicon in efficiency, size, speed, and cost in applications such as power conversion, motor drive, and pulsed light for lidar. GaN integration provides numerous system benefits for many high frequency applications. GaN integration is just beginning, and the benefits are assured to increase over time.

Bodo’s Power Systems
June, 2023
Read article

Read more

GaN Power-Conversion Solutions Eye Next-Gen Apps

GaN Power-Conversion Solutions Eye Next-Gen Apps

EPC, a leader in enhancement-mode gallium-nitride (GaN) FETs and ICs, delivered multiple technical presentations on GaN technology and showcased applications at PCIM Europe 2023 in Nuremburg. We spoke with the company's Founder and CEO, Alex Lidow, about the power industry and how it's being impacted by GaN devices.

Electronic Design
May, 2023
View video

Read more

Podcast: EPC’s Progress in GaN Reliability in RadHard and New Space Applications

Podcast: EPC’s Progress in GaN Reliability in RadHard and New Space Applications

In this episode of Spirit: Behind the Screen, Spirit Electronics CEO Marti McCurdy chats with EPC’s CEO Alex Lidow and Marketing Director Renee Yawger about the progress of GaN. They discuss GaN’s performance under high radiation as well as the extensive testing, failure modes and device lifespan detailed in EPC’s Phase 15 reliability report. With the full potential of GaN still to be explored and new EPC products releasing frequently, including new half-bridge drivers, low-side drivers and full power stage, GaN is especially useful in New Space and commercial space applications.

Spirit: Behind the Screen
Listen to podcast

Read more

Performance Benefits of Using Next-Gen Monolithic Integrated GaN Half-Bridge Power Stages in DC-to-DC and BLDC Motor Drive Applications

Performance Benefits of Using Next-Gen Monolithic Integrated GaN Half-Bridge Power Stages in DC-to-DC and BLDC Motor Drive Applications

Monolithic GaN integration has matured to the point that complex circuits such as a half bridge gate driver with various features can now be realized. This article will cover DC-to-DC and BLDC motor drive application examples that benefit from monolithic half-bridge integration.

Power Electronics News
May, 2023
Read article

Read more

Test-to-Fail Methodology for Accurate Reliability and Lifetime Evaluation of eGaN Devices in Solar Applications

Test-to-Fail Methodology for Accurate Reliability and Lifetime Evaluation of eGaN Devices in Solar Applications

Modern solar panels are demanding increasingly higher power density and longer operating lifetimes. Solar applications including power optimizers and panels with built-in microinverters are becoming the prevailing trend for an increasing number of solar customers, where low voltage GaN power devices (VDS < 200 V) are extensively used.

Bodo’s Power Systems
May, 2023
Read article

Read more

Growing GaN Ecosystem for BLDC Motor Drives

Growing GaN Ecosystem for BLDC Motor Drives

Gallium nitride (GaN) transistors and ICs have the best attributes to satisfy BLDC inverter needs. The superior switching capability of GaN helps to remove dead time and increase PWM frequency to obtain unmatched sinusoidal voltage and current waveforms for smoother, silent operation with higher system efficiency

Power Systems Design
May, 2023
Read article

Read more

How to Integrate GaN Power Stages for Efficient Battery-Powered BLDC Motor Propulsion Systems

How to Integrate GaN Power Stages for Efficient Battery-Powered BLDC Motor Propulsion Systems

This article discusses the advantages of GaN-based power stages and introduces a sample device from EPC, implemented in a half-bridge topology. It explains how to use associated development kits to quickly get started on a project. In the process, designers will learn how to measure the parameters of a BLDC motor and operate it in sensorless field orientation control (FOC) with minimal programming effort using Microchip Technology’s motorBench Development Suite.

Digi-Key Electronics
April, 2023
Read article

Read more

Power Steering with GaN ePower™ ICs

Power Steering with GaN ePower™ ICs

With Electronic Power Steering (EPS), the hydraulic system is replaced with an electric motor that aids the driver only when needed. Its digital assistance control can be modified online to adapt to driving conditions. There are, however, several design constraints to consider. One is that the driver does not want to lack the haptic feedback from the tires, especially when a vehicle is large, such as a truck. Other constraints are determined by safety regulations, particularly for automatic guided vehicles. These constraints require adopting an efficient, accurate and redundant system. Gallium nitride technology helps the designers in all these areas.

Power Electronics News
March, 2023
Read article

Read more

Power Packaging for the GaN Generation of Power Conversion

Power Packaging for the GaN Generation of Power Conversion

Since the launch of GaN-on-Si enhancement mode power transistors in March 2010 there has been a slow but monotonic shift towards adoption and replacement of silicon-based power MOSFETs. Initial adoption came from risk-taker visionaries in applications such as lidar, high-end audio amplifiers, robots, vehicle headlamps, and high-performance DC-DC converters. For the expansion of GaN for power conversion to get beyond the early adopters, a more user-friendly format than the WLCP needed to be developed. This format, however, needed to preserve the key attributes of small size, low RDS(on), high speed, excellent thermal conductivity, and low cost. In other words, the best package would be the least amount of package technically possible. Enter the PQFN…

Bodo’s Power Systems
March, 2023
Read article

Read more

GaN-based Design of a 2 kW 48 V/12 V Bi-directional Power Module for 48 V Mild Hybrid Electric Vehicles

GaN-based Design of a 2 kW 48 V/12 V Bi-directional Power Module for 48 V Mild Hybrid Electric Vehicles

With the increase in government mandates to combat climate change, automakers are moving quickly to leverage new technology to respond by switching from the internal combustion engine to electric-drive vehicles. This article presents the design of a 2 kW, two-phase 48 V/12 V bi-directional converter using GaN FETs that achieves 96% efficiency and is targeted for the 48 V mild hybrid system.

PSD North America
March, 2023
Read article Read more

GaN’s Evolution from Science Project to Mainstream Power Conductor

GaN’s Evolution from Science Project to Mainstream Power Conductor

Power-conversion technologies are experiencing the first tectonic shift since the move from bipolar to MOS. That shift, of course, is due to the viral adoption of wide-bandgap power devices. At this point, GaN is more than a specialty technology; it is a broad-scale replacement for silicon MOSFETs in applications ranging from 30 V up to 650 V — a multibillion-dollar market.

Power Electronics News
December, 2022
Read article

Read more
RSS
245678910Last