EPC Technical Articles

How2 Get the Most Out of GaN Power Transistors

Thirty years of silicon power-MOSFET development has taught us that one of the key variables controlling the adoption rate of a disruptive technology is how easy the new technology is to use. This principle has guided the design of EPC’s enhancement-mode GaN (eGaN) transistors. This article explains why eGaN devices are easy to use, describing how they operate and their similarities and differences versus power MOSFETs.

By Johan Strydom
How2Power
June, 2010

Read the article

GaN – the New Frontier for Power Conversion

Due to its advantages GaN will probably become the dominant technology. GaN has a much higher critical electric field than silicon which enables this new class of devices to withstand much greater voltage from drain to source with much less penalty in on-resistance.

By Alex Lidow, PhD
Bodo’s Power Systems
June, 2010

Read the article

Master the Fundamentals of Your Gallium-Nitride Power Transistors

Recent breakthroughs by EPC in processing gallium nitride (GaN) have produced enhancement-mode devices with high conductivity and hyper-fast switching, with a silicon-like cost structure and fundamental operating mechanism.

By Robert Beach, Steve Colino
Electronic Design
April 29, 2010

Read the article

Can Gallium Nitride Replace Silicon?

For the past three decades, Silicon-based power management efficiency and cost have shown steady improvement. In the last few years, however, the rate of improvement has slowed as the Silicon power MOSFET has asymptotically approached its theoretical bounds. Gallium Nitride grown on top of a silicon substrate could displace Silicon across a significant portion of the power management market.

By Alex Lidow, PhD
Power Electronics Europe
Issue 2, 2010

Read the article

RSS
First101112131415161719