GaN Talk a blog dedicated to crushing silicon
Term: eGaN
27 post(s) found

Apr 20, 2021

Pulsing 1550 nm Lasers for Lidar

Steve Colino, Vice President, Strategic Technical Sales

Pulsed lidar systems typically use either 905 nm or 1550 nm lasers for optical emission.  Above 1400 nm, various elements of the eye absorb the light, impeding it from reaching and damaging the retina.  As laser power is increased, not all of it is absorbed, and at some point, retinal damage may occur.  Since 905 nm light does not get absorbed, it does reach the retina, so care must be used to limit the energy density to prevent damage.

If the decision is to use 1550 nm light, efficiency differences in the semiconductor laser make it necessary to use higher current for the same optical power emitted compared with 905 nm light.  Additionally, the same characteristics that allow the light to be absorbed by the eye before getting to the retina cause it to be absorbed by the atmosphere.  This phenomenon is amplified as humidity increases to fog, rain, or snow.  The drive power required for a 1550 nm laser may be up to 10 times higher than for a 905 nm laser based system.  Fortunately, there is a solution to deliver the power necessary to drive 1550 nm lasers while maintaining the edge speed and pulse required for high resolution in pulsed lidar applications.

Jan 15, 2021

Reduce Audible Noise in Motor Drive Designs Using eGaN FETs and ICs

Renee Yawger, Director of Marketing

Brushless DC (BLDC) motors are popular and finding increasing application in robotics, e-mobility, and drones. Such applications have special requirements such as lightweight, small size, low torque ripple, low audible noise, and extreme precision control.  To address these needs, the inverters powering the motors need to operate at higher frequency but require advanced techniques to reduce the resultant higher power loss. Enhancement-mode gallium nitride (eGaN ®) transistors and integrated circuits offer the ability to operate at much higher frequencies without incurring significant losses. 

May 19, 2020

eGaN FETs Are Low EMI Solutions!

Michael de Rooij, Ph.D., Vice President, Applications Engineering

GaN FETs can switch significantly faster than Si MOSFETs causing many system designers to ask − how does higher switching speeds impact EMI?

This blog discusses simple mitigation techniques for consideration when designing switching converter systems using eGaN® FETs and will show why GaN FETs generate less EMI than MOSFETs, despite their fast-switching speeds.

Jan 23, 2020

eGaN vs. Silicon

John Glaser , Ph.D., Director of Applications

This post was originally published by Dr. John Glaser & Dr. David Reusch on June 13, 2016 on the Power Systems Design web site.

Comparing Dead-time Losses for eGaN FETs and Silicon MOSFETs in Synchronous Rectifiers

There have been several comparisons of eGaN FETs with silicon MOSFETs in a variety of applications, including hard-switched, soft-switched, and high-frequency power conversion. These studies have shown that eGaN FETs have large efficiency and power density advantages over silicon MOSFETs. Here we’ll focus on the use of eGaN FETs in synchronous rectifier (SR) applications and the importance of dead-time management. We show that eGaN FETs can dramatically reduce loss due to dead-time in synchronous rectifiers above and beyond the benefits of low RDS(on)and charge.

Jan 02, 2020

2020 New Year with GaN

Nick Cataldo, Senior Vice President for Global Sales and Marketing

Dear Friends, colleagues and partners of EPC,

Happy New Year to you and your family from all of us at EPC!

2019 was a year to remember for EPC’s GaN innovations and the multiple use cases for GaN that have come to fruition. EPC’s latest generation of GaN products have enabled engineers to gain power stage advantages due to their low RDS(on) characteristics, higher efficiency, enhanced thermal properties, small size and low cost. Now, more than ever, power system designers are switching from silicon devices to higher performance GaN components.

Nov 12, 2019

The Time for Disruption is Now − GaN Makes a Frontal Attack on Silicon Power MOSFETs

Alex Lidow, Ph.D., CEO and Co-founder

Silicon has been around long enough. It’s time for a younger and far more fit challenger to take over semiconductor material dominance.

When I first started developing power devices 44 years ago, the “king of the hill” was the silicon power bipolar transistor.  In 1978 International Rectifier (IRF) launched power MOSFETs as a faster alternative to the slower and aging bipolar devices.  The early adopters of the power MOSFET were applications where the bipolar just was not fast enough.  The signature example for its adoption was the switching power supply for the desktop computer; first at Apple, and then at IBM

Sep 12, 2019

Harnessing the Power of GaN for Motor Drives – Servo drives, robotics, drones

Renee Yawger, Director of Marketing

With advancements in motor technology, power densities have increased; motors are built in smaller form factors and designed for higher speeds, and higher precision, which requires higher electrical frequencies.

3-phase brushless DC (BLDC) motors are compact for their power ratings, can be precisely controlled, offer high electro-mechanical efficiency, and can operate with minimal vibration when properly controlled. These motors are increasingly or exclusively used in precision applications like servo drives, robotics, such as surgical robots, and drones, such as quadcopters. To keep current ripple within a reasonable range, these motors – given their low inductance – require switching frequencies up to 100kHz. A FET that can operate efficiently at high frequency is required to minimize losses and offset the torque ripple in the motor which creates vibrations, reduces drive precision and decreases efficiency.

Jun 11, 2019

Design Efficient High-Density Power Solutions with GaN

Rick Pierson, Senior Manager, Digital Marketing

This post was originally published by M. Di Paolo Emilio on the Power Electronic News web site.

Power switching devices based on gallium nitride technology (GaN) are in volume production now and delivering high efficiency and power density in real-world power applications. This article will examine how to implement high-power solutions with GaN technology, presenting application examples that demonstrate how GaN devices can effectively work even beyond 600 volts.

GaN devices differ from best-in-class field-effect transistors (FETs) and other silicon-based components in several important respects. GaN devices enable solutions that increase power density by two or more times over silicon-based approaches. As a result, component and package size can be reduced, yielding a solution with a smaller PCB footprint. GaN devices also offer higher efficiency than their silicon predecessors, albeit at a comparably higher overall system cost.

May 18, 2019

The Growing Ecosystem for eGaN FET Power Conversion

Rick Pierson, Senior Manager, Digital Marketing

eGaN® FET-based power conversion systems offer higher efficiency, increased power density, and lower overall system cost than Si-based alternatives. These advantageous characteristics have spurred the presence of an ever increasing ecosystem of power electronics components such as gate drivers, controllers, and passive components that specifically enhance eGaN FET performance. Some examples of eGaN FETs are shown in figure 1.

Mar 12, 2019

How to Exceed 98% Efficiency in a Compact 48 V to 6 V, 900 W LLC Resonant Converter Using eGaN FETs

Rick Pierson, Senior Manager, Digital Marketing

The rapid expansion of the computing and telecommunication market is demanding an ever more compact, efficient and high power density solution for intermediate bus converters. The LLC resonant converter is a remarkable candidate to provide a high power density and high efficiency solution. eGaN® FETs with their ultra-low on-resistance and parasitic capacitances, benefit LLC resonant converters by significant loss reduction that is challenging when using Si MOSFETs. A 48 V to 6 V, 900 W, 1 MHz LLC DC to DC transformer (DCX) converter employing eGaN FETs such as EPC2053 and EPC2023 is demonstrated, yielding a peak efficiency of 98.1% with a specific power of 48 W/cm2 (308 W/in2) and power density of 69 W/cm3 (1133 W/in3).